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Abstract
There are several approaches for acoustically localizing
sound sources. Typically, they can be classified depend-
ing on the choice of microphone setup: Arrays with mul-
tiple microphones and the corresponding beamforming
algorithms are often utilized in communication devices
(e.g. conference phones or smart speakers) or for tech-
nical investigations. Artificial heads in conjunction with
binaural hearing models usually aim at modeling the ca-
pabilities of human listeners.

This contribution utilizes an eight-channel microphone
array that is mounted on an artificial head and spatially
samples the direct vicinity of both ears. This arrange-
ment allows for a localization approach that closely re-
sembles the experience of a human listener while simul-
taneously avoiding the limitations of an artificial head
(e.g., with respect to front-back confusions).

The microphone signals are converted to the frequency
domain by a short-time Fourier transform and the phase
information is used by a convolutional neural network
to perform the localization task. The structure of the
neural network was adapted to the geometrical setup of
the microphone array. A performance assessment of the
localization system is presented that is based on real au-
dio recordings and a comparison with two conventional
beamforming algorithms is shown.

Introduction
There are different approaches to sound source localiza-
tion depending on the task at hand. In a more technical
application, one might consider the task of localizing the
origin of an unwanted mechanical noise in, e.g., a house-
hold appliance. In a communication environment, the
task could be the localization of a target speaker to en-
hance the signal quality by, e.g., using a beamforming
algorithm to separate the target signal from the back-
ground noise. For both use cases, there are numerous
approaches available that differ, e.g., depending on the
circumstances, the sensors or sensor arrays used and the
algorithmic solutions. Two methods that are also com-
monly used for performance comparisons are MUSIC [1]
and SRP-PHAT [2].

There is a limited amount of work in the area of source
localization utilizing machine learning approaches. A
method for localizing speakers with a convolutional neu-
ral network is described in [3]. The method is designed
under the assumption of W-disjoint orthogonality which
was shown to be approximately valid for speech signals
in [4] but can not be guaranteed for all types of sig-
nals. In [5], an efficient method for generating large simu-
lated datasets for training, validation and test of machine
learning localization systems is presented.
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Figure 1: Overview of the measurement chamber with posi-
tions of the eight loudspeakers

Neural Networks
In recent years, advances in processing hardware along
with algorithmic refinements have lead to an extensive
deployment of machine learning models in different areas
of signal processing. Most of these models are neural
networks [6] with artificial neurons as their elementary
building blocks.

The success of any machine learning approach relies on
the data that is available for training, validating and test-
ing the model. The training data set should be large
enough so that overfitting of the model can be avoided.
The data sets have to be disjoint to ensure a fair assess-
ment of the capabilities of the model while at the same
time each of them should be diverse enough that all steps
of the model building can be performed on meaningful
data.

Data Collection
The target of the present investigation is to lay the foun-
dation for a localization approach that is capable of mod-
eling human spatial perception by technical means. This
comprises not only considering the influence of head and
torso on the sound field but also analyzing the same spa-
tial areas of the sound field that could be utilized by a
human listener. To achieve this goal, a head-mounted
microphone array is used to record the signals to be ana-
lyzed. The microphone array follows the design described
in [7].
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Figure 2: Layer structure of the neural network.

The microphone array has eight microphones arranged
in two groups of four on each side of the head. The dis-
tribution of the microphones covers the typical range of
small head movements that are used by human listeners
to resolve ambiguities (cf. [8]). These ambiguities are
also present in binaural recordings which essentially rep-
resent listening to an acoustic scene while keeping the
head perfectly static.

Training, validating and testing a deep neural network for
any task requires a fairly large amount of data. Record-
ings were made in a measurement chamber, its dimen-
sions is given in Table 1 and its reverberation time is
very low at 65.9 ms.

Length: 3.40 m
Width: 2.40 m
Height: 2.02 m

Table 1: Dimensions of the measurement chamber

There are eight loudspeakers mounted to the walls of
the chamber, four are in the corners of the room, the
remaining four are on the walls. Due to the construction
of the chamber, which has differently slotted elements
at different angles inside, the loudspeakers can not be
mounted exactly in the center of the walls.

The recording setup consisted of the microphone array
on an artificial head which was positioned on a turntable
in the center of the room. The turntable was rotated in
steps of 5◦ leading to 576 recording positions (8 loud-
speakers and 72 different rotations) in total.

Two types of signals were recorded: White noise and
speech. The noise signals are used to train the neural
network. The speech signals are the English and Ger-
man sentences from [9]. The German sentences are used
for validation, the English sentences for testing and for
comparison with the conventional approaches from [1, 2].

The recordings are not directly fed into the neural net-
work. The signals are segmented and transferred to the
frequency domain by a short-term Fourier transform.
The feature that is analyzed by the neural network is
the phase information as it showed the best performance
in preliminary tests. The data is collected in a four-
dimensional tensor. The dimensions are frame index of
the transformation, frequency bins of the Fourier trans-
form and two dimensions for the microphones (2x4) –
roughly approximating the geometrical structure of the
microphone array.

Neural Network Design
The structure of the neural network with its layers is
shown in Figure 2. The different layers serve different
purposes which are briefly explained and motivated in
the following.

The localization is carried out individually for each time
frame. Accordingly, the input data to the network
is a three-dimensional tensor of dimensions 2x4x1025
(the transform length of the Fourier transform is set to
2048 samples). The first stage of the network performs
convolutive operations on the data with filter kernels of
different dimensions (corresponding to the dimensions of
the data): After the first three-dimensional convolutional
layer, the data is reshaped into a two-dimensional tensor
which is subject to two sequential two-dimensional con-
volutional layers. These layers are typically intended to
extract information and present it in a meaningful and
concise manner for the following layers.

The defining parameter of convolutional layer besides the
size of the filter kernel is the number of filter kernels. For
the three layers in this network, the layers apply 256, 256
and 64 filter kernels going from left to right.

The following flatten layer reduces the dimensionality of
the data to one. The dropout layer is a method to reduce
the risk of overfitting the parameters of the network to
the training data by randomly removing connections in
the training phase of the network. The dropout rate is
75 %. The final three layers are dense (or fully-connected)
layers which combine the information that was procured
by the convolutive layers. The first two of these layers
have 128 neurons, the last layer has 72.

The output of the network is the localization result. The
localization task is interpreted as a classification in this
system. The azimuth angles are split up into 72 equian-
gular classes leading to a resolution of 5◦.

The activation function for all layers but the last is the
exponential linear unit (ELU) [10], the last layer utilizes
the Softmax function [11] to provide output data that can
be interpreted as probabilities for the 72 possible source
directions.

The network parameters are initialized by the He-
Uniform approach [11, 12] and the categorical cross en-
tropy [6] is the loss function. The adaptive moment es-
timation (Adam) [13] optimizer determines the parame-
ters of the network, its stepsize and decay rates are set
to α = 0.001, β1 = 0.9 and β2 = 0.999, respectively.
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Figure 3: Probability map for the localization of a speech signal emitted by a loudspeaker at 250◦ in the additional acoustic
environment

Experimental Results
The experimental results for the test signals are given in
Table 2. The two result values are:

• Mean absolute error (MAE) between the actual
source position and the estimate

• Accuracy of the localization (readily defined for the
neural network; for the conventional approaches, the
estimates are quantized to the nearest class center
of an output class of the neural network)

Method MAE Accuracy

SRP-PHAT 9.30◦ 54.30 %
MUSIC 16.88◦ 43.39 %
Neural network 18.60◦ 66.50 %

Table 2: Experimental results for the test signals (English
speech from [9])

It can be observed that the conventional approaches
reach lower MAEs than the neural network. SRP-PHAT
in particular has only half the estimation error of the
neural network. The picture changes when looking at
the accuracies. The neural network outperforms the con-
ventional approaches by 12 % and 23 %, respectively.

A fairly low accuracy coupled with a low MAE (as can
be seen for SRP-PHAT) essentially means that the lo-
calization is quite consistently close to the correct value
but rarely hits it exactly. In contrast, the neural network
often localizes the source perfectly but when it does not,
the estimate is sometimes very far from the correct result.

This behaviour is very consistent with the loss function
that was used when training the network. The categor-
ical cross entropy only discriminates between two cases:
The estimate is correct or it is wrong. There is no in-

formation in the loss function about how far from the
correct value the current estimate is – the result is iden-
tical when the estimate is off by 5◦ or by 180◦.

Additional Acoustic Environment
It is interesting to see that the neural network is capable
of localizing signals which were not part of the training
data set. Another interesting parameter is the acoustic
environment: As described before, the data for training
the network was gathered in a controlled environment
in a measurement chamber with very little reverberation
and no strongly reflective surfaces.

Some additional speech signals were also recorded inside
a car cabin with the same microphone array on an artifi-
cial head. There are 15 loudspeakers in the car that are
mounted at different azimuth angles (in the dashboard,
the doors, the pillars and the boot). The data set is obvi-
ously fairly small compared to the set from the measure-
ment chamber that had 576 different source directions
so a full statistical investigation is not that meaningful.
There is a basic trend that all methods have higher mean
average errors compared to the measurement chamber
but that the losses are larger for the neural network.

Some interesting observations can already be made by
looking at examples from the localization results. One
example is shown in Figure 3, the result for the neural
network is on the left, the result for SRP-PHAT, the
better of the two model-based approaches, is on the right.
The loudspeaker is at an angle of 250◦ in relation to the
head. Accordingly, a perfect localization result would be
represented by a horizontal yellow line at that angle.

It can be observed that neither localization system is
perfect in this situation. The neural network mostly lo-
calizes the loudspeaker correctly but also identifies an-
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other source at 290◦ in some time frames. The result
for SRP-PHAT also shows two sources, one is almost in
the correct direction at 225◦ while the other source is
at approximately 140◦. An interesting aspect of the re-
sult is the different distribution of estimates: The neural
network has two distinct horizontal lines at the two afore-
mentioned angles with very few instances of high prob-
ability in the direct vicinity of the lines. The result for
SRP-PHAT, on the other hand, has two groups of points
that are spread in two angular regions. This is consistent
with the observation that is also made for the data from
the measurement chamber: Large deviations from the
mean estimate are rare for the model-based approaches
but small deviations are very common.

Conclusions and Outlook
A machine learning system for localizing sound sources
in the azimuth plane was presented in this contribution.
The system comprises several convolutional and fully-
connected layers. The localization task is interpreted
as a classification. A performance comparison between
the neural network and two conventional model-based
approaches revealed that the neural network achieves a
high accuracy, i.e., it perfectly localizes the source. The
mean absolute error of the neural network is higher than
the error for the model-based approaches, though.

Another acoustical environment, a car cabin, was used to
experimentally test if a neural network that was trained
in one specific acoustic environment can be used in an-
other environment. While the neural network outper-
formed the model-based approaches for some situations,
it lost more performance than the other approaches on
average. This again underlines the need for large training
data sets that are representative of the later use cases for
the neural network.

One aspect that was observed for the neural network in
its current implementation is the impact of the chosen
loss function. While the neural network often estimates
the source position correctly, the false estimates are usu-
ally not near to the correct position leading to a high
mean absolute error for the estimation. This could be
improved by modifying the loss function to incorporate
some measure of closeness to the target or by modeling
the localization task as a regression altogether.
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