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Introduction
The automatic detection of speaker changes in cocktail
party scenarios can be beneficial for adapting speech pro-
cessing algorithms in hearing devices or hearables. Differ-
ent approaches for speaker change detection in the audio
signal domain have been developed so far. For example,
solutions based on mel-frequency cepstrum coefficients
in combination with Gaussian mixture models [1, 2] or
based on neural networks [3] were proposed. However, in
more adverse acoustic conditions such algorithms need
additional information to achieve a robust performance.

Additional information could be extracted from elec-
troencephalography (EEG) recordings and in particular
from event-related potentials (ERP). An ERP can be
characterized by the amplitudes and latencies of positive
and negative deflections obtained after stimulus onset.
In a typical experimental oddball paradigm, a sequence
of regular (standard) stimuli is interrupted by irregular
(deviant) stimuli. In case of a speaker change, a deviant
speaker interrupts the current (standard) speaker. Com-
puting the difference waveforms of deviant and standard
stimuli results in an ERP representation with deflections
in specific time intervals after stimulus onset, which typ-
ically consists of the mismatch negativity (MMN) and
P3a. The MMN is a negative deflection in the ERP at
about 200 ms after stimulus onset [4]. It is most pro-
nounced over frontal brain areas and is elicited by acous-
tic stimuli changes, when the current stimulus does not
match the expected stimulus [3, 5, 6, 7]. The frontal
component of the P3 peak (P3a) is a positive deflection
in the ERP and occurs at about 300 - 500 ms after stim-
ulus onset. A P3a peak is elicited, when a rare, non-
predictable stimulus change occurs and the participant
focuses his/her attention on the new stimulus [8]. Due
to neural noise, the signal-to-noise ratio (SNR) of single-
trial ERPs is typically low, so that ERPs are usually
averaged over several trials in which a specific stimulus
was presented [8].

In neuroscientific research, EEG signals are typically
recorded with an EEG cap, using a standardized elec-
trode system. Further, a high contact quality is achieved
by minimizing the resistance between electrode and scalp.
For real-world applications, brain-computer interfaces
(BCI) with fewer electrodes and wireless connectivity
have been developed to access the EEG signals and trans-
late them into computer commands. The purpose of a
BCI is to achieve a robust recognition of commands based
on noisy, single-trial EEG signals, so that methods for
signal quality enhancement become important [9].

In this work we investigated if speaker changes can be
detected based on single-trial ERP signals. To this end,
we used a consumer BCI (Emotiv Epoc+ [10]) to record
EEG signals in an oddball paradigm with male and fe-
male speakers. After performing a pre-processing step,
features for the characterization of the MMN and P3a
were extracted and a linear discriminant analysis based
classifier was trained to discriminate between standard
and deviant speakers.

EEG Experiment
In total, N = 10 participants (8 male, 2 female) with
an average age of 25.7 ± 4.14 years participated in this
study. All participants were right-handed, healthy and
had self-reported normal hearing. The experiment was
approved by the Ethics Committee of Ruhr-Universtät
Bochum (registration number 18-6376). Written in-
formed consent was obtained before study commence-
ment. We used an active oddball paradigm for the
speaker change experiment with the word two spoken
by two male and two female speakers. A continuous se-
quence of the word two was presented by either a reg-
ular standard speaker or by rare deviant speakers. The
standard speaker changed from participant to participant
and was presented in 85% of the trials, while the deviant
speakers (remaining speakers) were played back in 15%
of the trials. The participants were instructed to count
each deviant stimulus. In total, we presented 720 stimuli
with a 1s stimulus-onset asynchrony.

We performed the experiments in an audiometric booth
with reduced acoustic reflections and electro-magnetic
shielding. A MATLAB [11] script played back the acous-
tic stimuli in mono through a loudspeaker (GENELEC
2029b [12]), which was positioned in front of the partici-
pant and above the screen. For the EEG acquisition, we
used the Emotiv EPOC+ device (channels AF3, AF4,
F7, F3, F4, F8, T7, T8, P7, P8, O1, O2 and mastoid as
reference, 256Hz sampling rate) with the software Emo-
tivPro [10], while the stimuli were marked by a virtual
serial interface from MATLAB. Note, that in [7] the pre-
vious model (Emotiv EPOC) was also used for recording
ERP signals.

To illustrate the performance of the Emotiv EPOC+
device, we computed the waveform averages across all
standard and deviant stimuli, respectively. Subtracting
the averaged standard waveforms from the averaged de-
viant waveforms yielded a difference waveform. Finally,
a grand average (GA) waveform was obtained by aver-
aging across all participants. Figure 1 shows this GA
waveform for the frontal electrodes F3 and F4, which al-
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Figure 1: Difference grand-average waveform (deviant minus
standard trials) for the channels F3 and F4. A Butterworth
band-pass filter was used with fstop1 = 0.1Hz, fpass1 = 1Hz,
fpass2 = 25Hz, fstop2 = 30Hz, Astop1 = 60dB, Apass = 1dB,
Astop2 = 80dB. The MMN and P3a occur approx. 230 ms
and 350 ms after stimulus onset, respectively.

lows to determine the MMN and the P3a as negative and
positive deflections peaking 230ms and 350ms after stim-
ulus onset, respectively. The shown GA ERP indicates
that there is a difference in the ERP for standard and
deviant stimulus. This clear evidence results from aver-
aging out the uncorrelated neural noise in multiple trials,
which leads to a higher signal-to-noise ratio (SNR) [8].

Single-trial detection of speaker change
We can also assume systematic differences between
single-trial ERPs obtained from a standard and a de-
viant stimulus, which however are more obfuscated in
the noisier ERP signals. To detect such differences, we
performed a pre-processing step and then extracted fea-
tures from the enhanced ERP signals.

In the pre-processing step, we first filtered the raw
EEG data with a Butterworth high-pass (fstop = 0.1Hz,
fpass = 1Hz, Astop = 80dB) and segmented then the
single-trial ERPs with respect to the stimulus onsets from
the EEG signal. Because the standard stimulus was pre-
sented most of the time, we applied a first-order recursive
filter on the succession of the single-trial ERPs to obtain
an enhanced version for the waveform of the standard
stimuli. In the next step, we averaged the channels F3
and F4 for the long-term standard ERP and the single-
trial deviant ERP, as MMN and P3a are most prominent
at the frontal electrodes. Then we computed the devia-
tion from the current single-trial ERP and the long-term
averaged standard ERP of the last segment.

After performing the pre-processing step we extracted
four signal features by computing the means and vari-
ances within time ranges surrounding the expected MMN
and P3a peaks. From Figure 1, we considered the time
ranges [150ms, 300ms] and [250ms, 400ms], respectively.
We could not use the peaks and latencies for the MMN
and the P3a of the single-trial ERPs, because the sig-
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Figure 2: Results for the speaker change detection algorithm
for each participant individually and as mean over all partici-
pants. Error bars in the averaged results denote the standard
error of the mean.

nal was too noisy. The first and second order statistics
provides more robust features.

As a classifier, we used the linear discriminant analysis
for each participant individually and divided our stim-
uli into a training and a testing set with approx. 50
stimuli of each class and set. To obtain a balanced num-
ber of standard and deviant stimuli, we only considered
the standard stimuli right before the deviants. As eval-
uation measures we computed the HIT rate (correctly
detected deviants), the false alarm (FA) rate (standards
miss-classified as deviant) and the f-score.

Results
Figure 2 shows the results of the speaker change detec-
tion algorithm based on the single-trial ERPs. Due to
our design, the a priori probability for both classes and
therefore the chance level for HIT and FA is 0.5. The re-
sults indicate that for all participants the algorithm has
a similarly good performance (HIT>0.5 and FA<0.5).
On average, both the HIT rate and FA rate significantly
deviate from chance level (p < 0.01, obtained by t-test).

Conclusion
The results of our proposed detection algorithm show
that we achieve a fairly robust level of performance across
all participants. On average speaker changes can be de-
tected significantly better than chance using a BCI and
single-trial ERPs. This additional information poten-
tially allows speech processing algorithms to adapt better
to dynamic acoustic scenes in a cocktail party scenario. A
remaining challenge resides in increasing the SNR, which
will be tackled by developing improved noise reduction
techniques. Furthermore, future work should consider
continuously spoken speech to approach a more realistic
scenario. In the long run, we believe that EEG-assisted
speech processing algorithms can be beneficial for im-
proving speech intelligibility and reducing listening effort
in future hearing devices and hearables.
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