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Introduction

Physical formulation of acoustics in fluids is commonly
acquired from the Newtonian equations of fluid dynamics
and their simplifications. The alternative approach based
on Lagrangian functions and the variational principle has
been used sporadically, even though it is central for most
of the modern field theories, such as electromagnetism,
gravity, and quantum field theory [1, 2]. These theories
are typically formulated with Lorentz-invariant Lagran-
gians defined in the four-dimensional spacetime. In the
rest of this work it will be demonstrated that acoustic
field is no exception in the theory based on analogous
acoustic spacetime (with the speed of light replaced by
the speed of sound) [3, 4].

In Ref. [5] it is discussed that sound waves produced by a
quadrupole source (turbulent low Mach number flow) can
be associated with weak perturbations of the background
acoustic spacetime, which are described by the linearized
Einstein field equations. This consideration will be ex-
tended here to the analogy with electromagnetism in the
case of dipole radiation. In the following sections we in-
spect several Lagrangian formulations which can capture
different acoustic phenomena in fluids. In particular, we
show that essentially incompressible near acoustic field
corresponds to adding mass to the massless gauge field
associated with acoustics through the process of sponta-
neous symmetry breaking. Large but spatially confined
mass violating the Lorentz invariance is used to repre-
sent rigid boundaries explicitly in the equation of motion,
while the sources are modelled as Noether currents, which
follow from the symmetries of Lagrangians describing the
non-acoustical field of fluid particles. Finally, the aeroa-
coustic analogy of Ffowcs Williams and Hawkings [6] is
derived in the acoustic spacetime.

Lagrangian and equation of motion

For a given Lagrangian (density) L, action is defined as
its integral over the entire spacetime:

S =

∫
d4xL(x), (1)

where x is a point in spacetime defined by four coordi-
nates xµ = [c0t, ~x] (µ = 0...3) and here we suppose that
c0 is the reference speed of sound for acoustic problems.
The equation of motion (for example, wave equation) is
derived by the principle of least action under variation of
the field. For example, for a scalar field φ Lagrangian is
a functional only of φ and its first derivatives, φ,µ. He-
re and in the following comma is used for the derivative
with respect to the coordinate which follows it, that is,

φ,µ = ∂φ/∂xµ. Minimizing the action leads to the Euler-
Lagrange equation [1]

∂L
∂φ
−
(

∂L
∂(φ,µ)

)
,µ

= 0. (2)

The most general Lorentz-invariant Lagrangian of a real
scalar field is

L =
1

2
φ,µφ,µ +

1

2

(mc0
h̄

)2
φ2, (3)

where m is a generic mass, h̄ is reduced Planck constant,
and the normalization with 1/2 is conventional. It is in-
variant under the discrete symmetry φ → −φ. Inserting
eq. (3) into eq. (2) gives the Klein-Gordon equation in
the flat Minkowski spacetime:

− (φ,µ),µ +
(mc0

h̄

)2
φ = −2φ+

(mc0
h̄

)2
φ = 0. (4)

For m = 0, the equation is the homogeneous scalar wave
equation. Hence, acoustic field is well described with the
massless real scalar field Lagrangian.

Mass in acoustic near field

Non-acoustic massive φ is still of great interest. The
Planck–Einstein relation reads E = h̄ω, where E is ener-
gy (not to be confused with acoustic energy) and ω is an-
gular frequency. On the other hand, for a non-relativistic
particle, E = mc20. For the purpose of the discussion here,
these two equations can be taken as the definition of h̄:
h̄ = mc20/ω. Equation (4) in frequency domain becomes(

ω

c0

)2

φ+∇2φ−
(mc0

h̄

)2
φ = 0 (5)

and after inserting h̄ we obtain Laplace’s equation∇2φ =
0, which is not Lorentz invariant and belongs to the
realm of non-relativistic (Newtonian) field theory. In
acoustics it describes incompressible (density ρ = const.
and c0 → ∞) fluctuations in the acoustic near field [7],
at frequencies ω and distances l which satisfy ωl/c0 � 1.
As will be shown later, mass is added in the acoustic ne-
ar field, when the Lagrangian symmetry is spontaneous-
ly broken. The length scale L at which this happens is
roughly given by the condition

ωL

c0
=
mc0L

h̄
= 1 (6)

and it depends on frequency.

DAGA 2020 Hannover

752



Mass as a thin homogeneous wall

When confined in space, the mass term can also be used
for introducing effects of solid bodies and boundaries. In
general they violate the Lorentz invariance. As an exam-
ple we can consider a thin homogeneous wall. Supposing
a one-dimensional space along the axis x1 and replacing
m2 with m2Cδ(x1), where C is a constant, we write down
the equation(

ω

c0

)2

φ+
d2φ

dx21
−
(mc0

h̄

)2
Cδ(x1)φ = 0. (7)

The general solution for x1 < 0 is φ(x1 < 0) = Iejkx1 −
IRe−jkx1 and for x1 > 0 is φ(x1 > 0) = ITejkx1 , where
k = ω/c0 is wave number, I is the complex amplitu-
de of the incident plane wave and R and T are usual
reflection and transmission coefficient, respectively. We
assume zero energy losses, absence of an incoming wave
from x1 = +∞, and we associate φ with velocity, which
leads to the minus sign in the solution for φ(x1 < 0).
The two solutions can be related by integrating eq. (7)
around x1 = 0 [8], which gives

jk(IT − I − IR)−
(mc0

h̄

)2
C(I − IR) = 0. (8)

Continuity of the solution at x1 = 0 forces I − IR = IT
and therefore

2jk(IT − I)−
(mc0

h̄

)2
CIT = 0, (9)

from which it follows

|T |2 =
1

1 + [Cm2c20/(2kh̄
2)]2

. (10)

This is very similar to the transmission loss of an acou-
stically thin homogeneous wall,

|T |2 =
1

1 + [ωmwall/(2ρ0c0)]2
, (11)

where mwall is mass of the wall per unit area and ρ0 and
c0 are density and speed of sound in the surrounding air.
After applying the relation, h̄ω = mc20, one obtains

|T |2 =
1

1 + [Cω/(2c0)]2
. (12)

Hence, the mass term (mc0/h̄)2(mwall/ρ0)δ(x1)φ in
eq. (7) with C = mwall/ρ0 is sufficient for describing
sound transmission through a thin homogeneous wall, wi-
thout additional constraints.

Spontaneous symmetry breaking in acou-
stic near field

The next simplest Lagrangian is defined for a complex
scalar field φ. Since it has two degrees of freedom (real
and imaginary part), we can make a constraint on one of
them. It is usually imposed that the theory is symmetric
under φ→ ejα(x)φ, where α(x) is an arbitrary phase not
affecting the physically relevant part of the complex field,

the amplitude. Notice that such a convention is different
from taking the real part of the field as the physically rele-
vant, which is more common in acoustics. The canonical
Lorentz-invariant Lagrangian with the given symmetry
φ→ ejαφ reads

L = φ∗,µφ,µ +
(mc0

h̄

)2
φ∗φ, (13)

with φ∗ the complex conjugate of φ. However, the values
of such a field at different points (and, therefore, derivati-
ves and all associated mathematical expressions) depend
on the (arbitrary) choice of α(x) for each particular x. In
order to fix this, one has to introduce a connection [2], a
vector gauge field Āµ coupled to the scalar field φ. The
Lagrangian becomes

L = −1

4
FµνF

µν + (Dµφ)∗(Dµφ) +
(mc0

h̄

)2
φ∗φ, (14)

which is the Lagrangian for scalar quantum electrodyna-
mics. Here, Fµν = Āν,µ − Āµ,ν , Dµφ = φ,µ + jeĀµφ/h̄
and (Dµφ)∗ = φ∗,µ − jeĀµφ∗/h̄ are covariant derivatives,
and e is a constant (elementary positive charge).

Analogously to the small metric perturbation h̄µν con-
sidered in Ref. [5], Āµ can represent an acoustic field
due to a dipole source. It turns out that the Lagrangian
in eq. (14) captures the interaction between sound wa-
ves and fluid particles or a dipole source in free space,
with the particles represented by the complex scalar field
φ. We observe spontaneous breaking of now continuous
symmetry φ→ ejα(x)φ. The Lagrangian is [2]

L = −1

4
FµνF

µν + (Dµφ)∗(Dµφ)

−
(mc0

h̄

)2
|φ|2 +

λ

4
|φ|4.

(15)

Both λ and m can depend on certain parameter l. Mo-
reover, m2 > 0 when l > L, where L is a given point
of symmetry breaking, and m2 < 0 when l < L. In the
latter case, the field is not a small perturbation of the
background medium and this is the reason for replacing
m2 with positive −m2 when compared to eq. (14).

The potential has a minimum for φ0 =
√

2m2c20/(λh̄
2)ejθ

and any θ(x). We can choose φ0 =
√

2m2c20/(λh̄
2). Next

we could expand φ = φ0 + φ̃. However, a more elegant
approach is to take the two real degrees of freedom of
φ̃(x), denoted with σ(x) and π(x), and write

φ =

(
φ0 +

σ√
2

)
ejπ/(

√
2φ0). (16)

After inserting this in eq. (15) and decoupling σ, which
is irrelevant, we can let m→∞ and λ→∞ (keeping φ0
unaffected), so that the Lagrangian without it becomes in
the unitary gauge (choosing α(x) such that π(x) = 0) [2]

L = −1

4
FµνF

µν −
(
eφ0
h̄

)2

ĀµĀ
µ. (17)
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This is the Lorentz-invariant Proca Lagrangian for a mas-
sive gauge field with the mass m =

√
2eφ0/c0. Indeed, the

equation of motion which follows from this Lagrangian is
the four-vector version of eq. (4) with Āµ instead of φ and
Āµ,µ = 0. Thus, the gauge field associated with acoustics,
Āµ, becomes massive through the Higgs mechanism for
l < L (in the near field of the fluid particles acting as
sources). If the positive charge e is analogous to the mass
ρ0dV , where ρ0 is the fluid density and dV ∼ L3, then
φ0 = c0/

√
2. In the quantum field theory, the field π(x)

(often referred to as pion) represents a Goldstone boson
and the field σ(x) is known as Higgs boson.

Acoustic Planck scale and Hawking radia-
tion

The smallest length scale L = h̄/(mc0) from eq. (6) at
which the spontaneous symmetry breaking occurs is the
scale of the stochastic motion of the fluid particles, the
mean free path. It can be associated with a certain ma-
ximum frequency ω = c0/L. On the other hand, at such
a small scale we can observe the stochastically moving
particles as an aeroacoustic source (turbulence), as in
Ref. [5]. Equation (19) there relates mass with the acou-
stic Schwarzschild radius L: m = Lc20/(2G), with G the
gravitational constant. Equating the two length scales
and masses, we find

L =

√
2h̄G

c30
=
√

2LP , (18)

where LP =
√
h̄G/c30 is the acoustic Planck length. A

very small fluid element with volume dV ∼ L3 can be
treated as a Planck particle. Within its volume, masses
of the acoustic field and fluid particles field become equal.
This is the smallest source region in which the massive
acoustic spacetime perturbations cannot be distinguished
from the moving particles of fluid and the separation on
the left- and right-hand side in the Einstein field equati-
ons becomes inappropriate.

Thermodynamic analogy provides another interesting re-
lation. The equation of state of an ideal gas gives

T0 =
Mc20
γkB

, (19)

where γ is heat capacity ratio, kB is the Boltzmann con-
stant, T0 is the reference temperature due to the stocha-
stic motion of the molecules, and M is mass of a single
molecule of the gas. This is the expression for Planck
temperature if we adopt for the Planck mass

mP =

√
h̄c0
G

=

√
Mc30
ωG

= M

√
2c0
ωL

=
M

γ
. (20)

Here we used the definitions of h̄ and G. Therefore, the
analogy holds for

√
ωL/(2c0)→ γ and γ indicates acou-

stic compactness of the gas molecule. In air at room tem-
perature, γ = 1.4 corresponds to the Helmholtz number
value 3.92, which roughly separates the acoustic near and
far field, and Planck mass closely corresponds to the mo-
lecular mass.

If we again observe motion of the molecules as a micro
turbulence, a weak quadrupole source, we expect the in-
crease of its efficiency in the vicinity of compact bodies.
The amplification factor next to a compact rigid body
is [9] c0/(ωL), where L is given by eq. (18). Introdu-
cing this in eq. (19) and using again L = 2GM/c20 and
Mc20 = h̄ω, we can write

TH =
4π

γ

h̄c30
8πGkBM

, (21)

which is, apart from the factor 4π/γ equivalent to the
expression for Hawking radiation of a black hole with
mass M [3]. The more efficient dipole radiation at the
rigid boundary corresponds to the photon generation at
the event horizon of the black hole.

Currents as sources

Details of the source mechanism, such as fluid-body in-
teraction, are often unimportant and we are interested
only in the resulting acoustic field. The interaction terms
in the Lagrangian can then be replaced with the current
following from the Lagrangian symmetry and Noether’s
theorem. In order to demonstrate this, we can first cal-
culate derivative of the Lagrangian in eq. (13), which re-
presents the field of fluid particles, with respect to α [2]:

∂L
∂α

= 0 =

2∑
n=1

(
∂L
∂φn

∂φn
∂α

+
∂L

∂(φn,µ)

∂(φn,µ)

∂α

)

=

2∑
n=1

[
∂L
∂φn

∂φn
∂α

+

(
∂L

∂(φn,µ)

∂φn
∂α

)
,µ

−
(

∂L
∂(φn,µ)

)
,µ

∂φn
∂α

]
,

(22)

where φ1 = φ and φ2 = φ∗. The first and the last term
cancel according to eq. (2) and the remaining part gives
the conservation law, Jµ,µ, for the Noether current

Jµ =

2∑
n=1

∂L
∂(φn,µ)

∂φn
∂α

= jφφ∗,µ − jφ∗φ,µ. (23)

The Lagrangian in eq. (14) gives for the field Āµ

L = −1

4
FµνF

µν + eĀµJµ/h̄ (24)

to the lowest order. This is the electromagnetic Lagrangi-
an with the interaction expressed in terms of the current
Jµ. Similarly, the Lagrangian which gives the quadrupole
equation of motion (2h̄µν = −2kGTµν/c40 [5]) is [2]

L =
1

2
h̄µν2h̄µν − h̄µν h̄να,µ,α + h̄ααh̄µν

,µν

− 1

2
h̄αα2h̄

α
α −

2kG

c40
Tµν h̄

µν .
(25)

It is the leading order approximation of the Einstein-
Hilbert Lagrangian with added current. The current is
stress-energy tensor Tµν and the interaction constant is
2kG/c40, where k is a dimensionless constant.

Stress-energy tensor is the current obtained when the pa-
rameter α is replaced with the coordinates xν , reflecting
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the symmetry of the action (not Lagrangian) under glo-
bal spacetime translations. Equation (22) takes the form

L,ν =

2∑
n=1

[
∂L
∂φn

φn
,ν +

(
∂L

∂(φn,µ)
φn

,ν

)
,µ

−
(

∂L
∂(φn,µ)

)
,µ

φn
,ν

]
,

(26)

which in general does not equal zero. However, eq. (2)
applies and

τµν,µ =

2∑
n=1

(
∂L

∂(φn,µ)
φn

,ν

)
,µ

− ηµνL,µ = 0, (27)

where τµν is the conserved canonical stress-energy tensor
and ηµν = diag(−1, 1, 1, 1) is the Minkowski metric. τµν

can be brought to the symmetric Tµν by transforming
it as τµν → τµν + Θαµν

,α, with an appropriate Θαµν

satisfying the antisymmetry Θαµν = −Θµαν .

If boundaries are present, function f , the argument of
the Heaviside function, does depend on the coordinates
xν . However, we are considering symmetry of the action
not the Lagrangian, so we can multiply entire eq. (26)
with H(f), where f(t, ~x) = 0 at the surface of the body
which bounds the spacetime, f(t, ~x) < 0 inside the body,
and f(t, ~x) > 0 outside the body. This leads to

H(f)Tµν,µ = 0, (28)

which comes down to the Ffowcs Williams and Hawkings
aeroacoustic analogy [7], since Tµν,µ = 0 expresses the
mass and momentum conservation in low Mach number
flows [5]. The boundary moves with the velocity ~u and
∂H/∂t+ ~u · ∇H = 0, which violates Lorentz invariance.

Following Ffowcs Williams and Hawkings,

HTαβ,β = (HTαβ),β − TαβH,β = 0. (29)

The first term is free space quadrupole and the second
term is the dipole contribution which gives∫

TαβH,βd
3~x =

∮
S

(Tαj − Tα0uj/c0)njd
2~x. (30)

Here, nj (with j = 1...3) is unit vector normal to S poin-
ting outwards. A surface source in the form of the four-
vector current is given by

Jα = Tαjnj/c0 − Tα0ujnj/c20
= [ρ(~v − ~u) · ~n, ρ~v(~v − ~u) · ~n/c0 + p~n/c0]

(31)

and the divergence equals

Jα,α =
∂

∂t
(ρ(~v − ~u) · ~n/c0)

+∇ · (ρ~v(~v − ~u) · ~n/c0 + p~n/c0) .
(32)

The first term describes thickness noise and the second
term loading noise. For a rigid boundary (~u · ~n = ~v · ~n)
and Jα = [0, p~n/c0]. For a rigid, flat (∇·~n = 0), and mo-
tionless (∇p · ~n = 0) boundary, Jα,α = 0, corresponding
to the conservation of charge in electromagnetism. In this
way we have derived the Ffowcs Williams and Hawkings
analogy from the variational principle.

Conclusion

In this work it is demonstrated that acoustics in fluids
can be formulated using Lorentz-invariant Lagrangians
and variational principle in acoustic spacetime. The ana-
logy with electromagnetism and general relativity was
utilized, which holds for low Mach number flows. The
considered formalism allows a direct consideration of the
acoustic phenomena of interest, which may be obscured
by the generality of governing equations. From the di-
dactic point of view, it points to the similarities between
the Newtonian acoustics and modern field theories. Its
advantages over the classical treatment for solving prac-
tical acoustic problems are yet to be investigated.

Further development of the theory can include replacing
the complex fluid field with a spinor field, following the
theory of quantum electrodynamics. Such a spinor field
should be related to the aeroacoustic dipole source. Fur-
thermore, the acoustic spacetime is built by the same
fluid particles (represented by the complex fluid field φ)
which constitute both the stress-energy tensor and the
dipole current and couple to the acoustic gauge fields. In
other words, in a simple fluid such as air, we deal with a
pure (but perturbed) vacuum spacetime. The fluid par-
ticles are not immersed in the spacetime (as fermions in
quantum field theory), they constitute it. This is concep-
tually very similar to the spin network of loop quantum
gravity, which may provide further insight, for example
a spinor description of a free space quadrupole source.
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