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Introduction
The speech recognition performance of human listeners
is an important factor in the evaluation of acoustics and
signal processing in communicative scenarios. Especially
for listeners with hearing problems, the realistic assess-
ment of the effect of environmental factors on their speech
recognition performance is important to identify accessi-
ble communication environments. Moreover, for listen-
ers with impaired hearing, the speech recognition per-
formance in the same acoustic scene can strongly vary,
depending on the acoustical parameters as well as on the
individual hearing abilities. When non-linear or time-
dependent signal processing (e.g. hearing aid process-
ing) is part of the communication channel, it is often
difficult to predict the effect on speech recognition per-
formance using objective methods [1]. Recently, the in-
dividual speech recognition performance of listeners with
aided impaired hearing was predicted with high accu-
racy (3.4 dB root-mean-square (RMS) prediction error)
in static monaural noisy listening conditions [2]. Those
predictions were performed with the simulation frame-
work for auditory discrimination experiments (FADE,
[3]), where a re-purposed automatic speech recognition
(ASR) system was used to simulate speech recognition
experiments.

However, the majority of communication environments
allow for head movements and binaural listening. In
these scenes, binaural signal processing schemes (e.g.
with binaural hearing devices) can interact with effects
related to spatial hearing. At least in anechoic listening
conditions, the masking release due to a spatial separa-
tion of speech and noise signals can be up to 15 dB for the
matrix sentence test [4]. Due to the different effect of the
head shadow on spatially separated signals, the signal-to-
noise ratios (SNRs) at each ear is different, which results
in a better ear and a worse ear. However, the binaural
performance is usually observed to be better than the
monaural performance with the better ear, i.e. the infor-
mation of the worse-ear signal improves the performance.
This requires an interaction between the signals of both
ears which is traditionally modeled with an equalization-
cancellation (EC) principle [8] that can be interpreted
as an adaptive SNR-optimizing beamformer. The speech
recognition thresholds (SRTs) in [4] were modeled with
the binaural speech intelligibility model (BSIM), which
is an extension of the speech intelligibility index (SII) by
prepending an EC stage to it.

In a first approach with FADE, binaural speech recogni-
tion was simulated by concatenating two feature vectors
(left ear and right ear) [1]. This can be interpreted as

a model of automatic better-ear listening (ABEL). The
approach was used to predict the beneficial effect of bin-
aural noise suppression schemes on SRTs. While the pre-
dicted improvement in SRT showed good agreement with
the measured data in a cafeteria scene, the unaided SRTs
were predicted to be worse than the measured SRTs.
This shows that the better-ear listening approach is not
sufficient to model binaural listening with FADE.

Implementations of the EC principle require a compar-
atively high temporal signal resolution. Contra-lateral
inhibition describes an alternative model where the sig-
nal on the ipsi-lateral side can suppress portions of the
signal on the contra-lateral side in a longer temporal con-
text. This concept was recently implemented to improve
speech recognition performance for users of cochlear im-
plants [5]. The main idea is that information which is
already encoded on one side can be removed from the
other side to unmask possibly masked information. In
the current contribution, this concept is simplified and
implemented in FADE by taking the difference between
the left and the right feature vectors as an additional
feature vector into account. The extended version of the
FADE simulation approach is evaluated with respect to
basic binaural listening experiments, i.e., SRTs in spa-
tial configurations and binaural masking level differences
(BMLDs). This is possible, because in FADE the same
simulation approach can be used for speech recognition
as well as for basic psycho-acoustic experiments.

With this unique feature, model parameters of the speech
recognition model can be inferred from measured psycho-
acoustic data. In a recent study [2], the loss of informa-
tion due to the individual hearing impairment was imple-
mented in the feature extraction stage, where the param-
eter values of the signal degradation model were inferred
from tone(-in-noise) detection experiments [2]. For this,
a parameter controlling a supra-threshold signal degra-
dation, the level uncertainty uL was used to model the
distortion component of hearing loss [6] which was pos-
tulated earlier [7]. The same parameter can be expected
to remove information from the difference of the feature
vectors of the left and the right channel, and hence in-
fluence binaural speech recognition performance. In this
contribution the uL parameter value is inferred from the
BMLD experiments and used to predict SRTs in anechoic
spatial listening conditions.

Methods
Binaural masking level differences
Binaural tone-in-noise detection experiments were sim-
ulated and compared to literature data in [8]. Tone-in-
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noise detection thresholds were simulated with pure tones
of 600ms duration flanked by 200ms cosine ramps. The
noise maskers were bandpass-filtered white noise signals
with a bandwidth of two octaves centered around the
target frequency on a logarithmic frequency scale. Two
conditions were considered: S0N0, in which the left and
right signals were identical, and SπN0, in which the tone
had an inter-aural phase shift of π. The difference in de-
tection threshold between S0N0 and SπN0 is reported as
the BMLD.

Spatial speech recognition thresholds
The German matrix sentence test was simulated for the
anechoic conditions described in [4]. The matrix sen-
tence test, which exists in more than 20 languages [9],
consists of a set of 50 common word, from which syntacti-
cally fixed sentences like “Peter kauft fünf schöne Messer”
(“Peter buys five nice spoons”) are generated. For mea-
surements with human listeners, phonetically balanced
lists of 20 sentences are presented in noise, and after each
presented sentence the speech level is adapted with a tar-
get of 50% correct word recognition score. In [4], the
target speaker was located in front of the listener and
the SRTs were measured for different positions of a sta-
tionary noise masker located around the listener. For the
simulations in this work, the same head-related impulse
responses (HRIRs) were used. The simulated SRTs are
compared to the empirical data and predictions with the
speech intelligibility index (SII)-based BSIM presented
in [4].

Binaural speech intelligibility model
For the BSIM, the SII was extended with an EC stage [4].
The EC principle works on the time series of amplitude
values by finding the relative gain and time delay between
the left and right signal channel which minimizes the en-
ergy of the difference signal. In this way, the energy of a
dominant noise masker, i.e. if the target-to-masker ratio
is negative, can be completely removed. It was shown
that this approach is suitable to model BMLDs [8]. To
model the BMLDs of human listeners, i.e. to avoid the
complete removal of the masker energy, an internal noise
has to be assumed and its value to be inferred from em-
pirical data. The combination of the EC principle with
the SII was shown to be suitable to predict the SRTs
in binaural listening conditions [4]. However, for predic-
tions of SRTs, the SII is a latent variable with values be-
tween 0 and 1 (0 - unintelligible, 1 - perfectly intelligible)
which needs to be mapped to an SRT in a measured ref-
erence conditions. Hence, SII-based approaches can only
predict differences in SRT relative to a reference condi-
tion in which the outcome of the speech test needs to be
known. For comparison, the BSIM predictions from the
literature [4] are reported.

Simulations of experiments with FADE
FADE version 2.3.1 [11] was used to simulate the de-
scribed experiments analogous to the standard procedure
proposed in [3]. In this approach, a simple ASR sys-
tem using Gaussian Mixture Models (GMM) and Hidden
Markov Models (HMM) is trained on noisy matrix test
speech material in matched training conditions to dis-
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Figure 1: Log Mel-spectrogram (LogMS) of a clean German
speech sample (upper panel), the LogMS of the same speech
signal in noise at 6 dB SNR (center panel), and the LogMS
of the same noisy speech signal with a level uncertainty uL of
2 dB.

criminate between the 50 words. The trained system is
than used to determine the psychometric function of the
system by evaluating recognition rates at various signal-
to-noise ratios. From the psychometric function, the
requested SRT is interpolated and reported as the pre-
dicted outcome of the test. Due to the matched training,
i.e. using the same procedure for generating training and
testing data, the predicted value can be interpreted as an
estimate of the maximum achievable performance, i.e.
the minimum achievable SNR. Tone detection thresholds
can be predicted with the same approach by interpreting
the classes “tone” and “no tone” as two words that need
to be discriminated. Predictions with this approach for
SRTs and tone detection thresholds were found to be in
line with the performance of human listeners [3]. Like in
human listeners, the recognition rate of the ASR system
is limited due to the masker and the representation of
the audio signals, i.e. the feature extraction. In contrast
to index-based methods like the SII, no empirical SRT
data is needed to predict the outcome of a speech test,
e.g. an SRT.

The basis for the feature extraction used in FADE is
a spectro-temporal representation, similar to a spectro-
gram, which is widely used in ASR solutions; the loga-
rithmically scaled Mel-spectrogram (LogMS). An exam-
ple of a LogMS of a clean speech signal is depicted in
the upper panel of Figure 1. It has a temporal resolu-
tion of 10ms and a spectral resolution of about 1ERB,
mimicking the spectral resolution of human auditory fil-
ters, where the amplitude values are compressed with the
logarithm. The compression of the amplitudes with the
logarithm results in masking of information when two sig-
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nals are added. This can be observed in the center panel
in Figure 1, where the test-specific stationary noise was
added to the clean speech signal, before the LogMS was
calculated. The time-frequency bins which represent high
levels are not altered, while the regions with low levels
are masked by the noise signal.

The level uncertainty is implemented in the domain of the
LogMS as an additive noise, which may be interpreted as
a convolutional noise in the corresponding linear ampli-
tude domain. For this, values are drawn from a standard
normal distribution and multiplied with the factor uL
before they are added to the time-frequency bins of the
LogMS. In the lower panel in Figure 1 the effect of a
level uncertainty of 2 dB is illustrated, where it can be
observed that it likewise alters time-frequency bins with
high and low amplitudes. This property is the reason why
it was proposed to model a limited level resolution, i.e. a
supra-threshold or distortion component of hearing loss
[6]. In the simulations presented in this study, values of
0.5, 1.0, and 2.0 dB were considered for uL. As described
in [3], the LogMS is only the basis of the feature vectors
employed in FADE. From the LogMS, Separable Gabor
Filter Bank (SGBFB) features [10] were extracted and
used as features for the ASR system.

Binaural extensions of FADE
For the ABEL approach, the feature vectors for the left
and the right channel were calculated separately and
concatenated [1]. The corresponding code listing de-
scribes the concatenation in GNU/Octave syntax: feat

= [feat left; feat right];. This can be interpreted
as a model of better ear listening because the ASR sys-
tem can learn from both channels and, in theory, just use
the information in the channels of the respective better
ear. The principle of contra-lateral inhibition (KAIN)
was implemented by replacing the cited code portion of
the SGBFB-ABEL feature extraction with the following
code: feat diff = feat left - feat right; feat =

[feat left; feat diff; feat right];. Hence, an ad-
ditional feature vector was generated by subtracting the
left and right SGBFB feature vectors element-wise. Be-
cause the SGBFB features can be described as a linear
combination of the time-frequency bins of the LogMS,
the difference could as well be calculated on the LogMS;
which, however, would be computationally less efficient.
For the KAIN approach, the three feature vectors (left,
right, and difference) were concatenated.

Results
Binaural masking level differences
The simulation results of the BMLD experiment are de-
picted in Figure 2 on top of the empirical data from the
literature, which is indicated by the black symbols. The
ASR system with the ABEL binaural extension approach
showed no masking release due to the phase shift of the
target signal; i.e., the simulated BMLDs were less than
±1 dB for all frequencies. In contrast, with the KAIN
binaural extensions, frequency-dependent binaural mask-
ing release was observed, which was less pronounced at
high frequencies. As expected, the simulated BMLDs
strongly depended on the level uncertainty and were
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Figure 2: Modified from [8]. Black symbols indicate the
measured BMLDs from the literature. The colored symbols
represent the simulated BMLDs with the ABEL and KAIN
approaches with different values for uL.
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Figure 3: Empirical SRTs and predictions with BSIM from
[4]. Black symbols indicate the measured SRTs and red sym-
bols the BSIM predictions from the literature. The other col-
ored symbols represent the simulated BMLDs with the ABEL
and KAIN approaches with different values for uL.

found to be lower for increased values of uL. For tone
frequencies up to 2 kHz, the simulations seem to describe
the literature data from [8] best with a value between 1
and 2 dB for uL. The empirical data from the literature
shows small BMLDs of about 3 dB at frequencies above
2 kHz. In that frequency range, the data would be better
described with a lower value for uL of about 1 dB. The
solid line in Figure 2 indicates the best description of the
empirical data with the EC-based model according to [8],
which describes well the empirical data below 2 kHz but
misses the lower BMLDs at frequencies above 2 kHz.

Spatial speech recognition thresholds
Figure 3 shows the simulation results of the spatial speech
recognition test along with the empirical SRT data and
the corresponding BSIM predictions from the literature.
The empirical results show a huge benefit, i.e. decrease
in SRT, when the noise signal was spatially separated
from speech signal, which was most pronounced at −100◦
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and +125◦ with an SRT of about -19 dB. All models ac-
curately predicted the SRT in the co-located condition,
where speech and noise signal were located in front of
the listener at 0◦. For the BSIM, this was the reference
condition, i.e. the value was not predicted but set to the
empirical value. When the noise was located behind the
listener at ±180◦, all models slightly overestimated the
release from masking by 1 to 3 dB. Moreover, all mod-
els predicted a decrease in SRT when the noise signal
was moved to the sides and correctly predicted that the
lowest SRTs were at −100◦ and +125◦.

However, the predictions deviated differently from the
measured data when the noise was lateralized. BSIM
over-estimated the human performance by 1 to 4 dB. The
FADE-based predictions showed the same ranking than
in the predictions of the BMLD, where ABEL predicted
the lowest, and KAIN with uL=0.5 dB the highest per-
formance. With ABEL, human performance was under-
estimated by 3 to 5 dB. But, even if the system did not
show a BMLD for tone detection, it predicted a decrease
by about 8 and 6 dB when the noise was moved form
the front (0◦) to −100◦ and +125◦, respectively. This is
because the SNR improves on the contra-lateral ear due
to the head shadow effect and the modeling approach
was able to exploit that information. With KAIN, hu-
man performance was slightly under-estimated by 0 to
2 dB with uL=2dB and slightly over-estimated by 1 to
2 dB with uL=1dB. The predicted SRTs with KAIN and
uL=0.5 dB were found to be 3 to 4 dB lower than the
observed SRTs in the lateralized conditions. The most
accurate FADE-based predictions were observed with the
values for uL which were inferred from the simulations of
the BMLD experiment, i.e. a value between 1 and 2 dB.

Discussion and conclusions
Spatial SRTs in noise in an anechoic setup were predicted
by an ASR-based model that directly exploits the differ-
ence of robust ASR features between the left and right
channel: FADE with the KAIN binaural extension ap-
proach with a level uncertainty uL between 1 and 2 dB.
The level uncertainty, originally introduced to simulate
a monaural supra-threshold component of hearing loss
[6], was shown to strongly modulate the binaural per-
formance, and suitable parameter values for uL were in-
ferred by comparing simulated to measured BMLDs. The
prediction performance was close to or better than with
the BSIM, which implements an EC principle. An im-
portant difference to the approach with BSIM is that the
left and right signal are compared on a stage where the
temporal resolution is about 10ms which is not sufficient
to resolve inter-aural time differences due to the HRIRs.
The implementation of the binaural interaction can be
interpreted as the difference of the LogMS of the left and
the right channel, which hence encodes level differences
between the two ears.

While the results do not allow to draw conclusions about
the human auditory system, they show that the out-
come of a simple experiment on spatial speech recogni-
tion performance in anechoic listening conditions can be
predicted without explicitly using the inter-aural time

or phase differences present in the input signals. It is
also notable that the same model could predict BMLDs,
which was not possible when the difference feature vector
was missing, i.e. FADE with ABEL. This can be inter-
preted as a hint that robust ASR features already contain
sufficient binaural information to explain some basic bin-
aural phenomena which the GMM/HMM back-end fails
to decode if this information is not explicitly encoded. In
this regard, a deep-neural-network-based approach might
show to be better suited in the future. The (originally
monaural) level uncertainty was found to be well suited
to explain, i.e. limit, binaural listening performance; this
immediately raises the question if the binaural hearing
performance of listener with impaired hearing could be
predicted based on monaural parameters.

Of course, the validity of the presented approach should
be tested in more realistic spatial communication con-
figurations and in combination with binaural signal pro-
cessing algorithms.
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