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Abstract
Road traffic is an important component of urban noise,
regarded by the World Health Organization as the third
type of pollution that most affects the population of lar-
ge cities. The auralization technique stands out as an
intuitive tool for assessing environmental noise, but does
not yet explore the sound characteristics to provide an
accurate hearing experience.

In this context, it is desirable for a database containing
vehicle sounds to be provided to the auralization systems,
but these signals must be previously located and isolated
from other sound sources.

This paper presents a performance evaluation and com-
parison of two direction of arrival (DoA) algorithms em-
ployed to extract the directivity of vehicular acoustic
sources. One of the algorithms is based on the generali-
zed cross-correlation (GCC), whereas the other employs
the minimum variance distortionless response (MVDR)
beamformer. Based on the estimated source locations,
spatial filtering is then performed using two beamfor-
ming approaches, namely Delay-and-Sum and MVDR.
The above methods are applied to the data acquired by
eleven circularly arranged microphones, and their selec-
tivities are compared considering different velocities.

Introduction
Noise pollution causes a strong impact in the health and
well-being of city inhabitants and is stated by the World
Health Organisation (WHO) as a public health issue [1].
Noise maps and indicators are often employed for as-
sessment purposes, as they provide an idea of the sound
in the mapped location by representing sound features
in a numerical scale. Such simplification helps in esta-
blishing a common ground for noise assessment but lacks
in providing a realistic and intuitive sound representa-
tion. This problem is aggravated when evaluation is to
be conducted by non-experts such as decision makers,
politicians and the general public.

As an alternative, auralization technique produces an au-
dio signal which represents, as accurately as possible, the
hearing experience that a listener would have in the real
scene. Auralization systems [2] are able to generate an
audio signal from numerical data which are responsible
for describing the whole scene, including source charac-
teristics, sound propagation, sound reproduction and all
the elements involved in these steps. A proper descrip-
tion influences on whether the generated sound can be
distinguished from the real one or not. Therefore, an au-
ralization system implementation requires a signals and

models database to be used as an input.

Road traffic is one of the leading causes of complaint
in noise monitoring studies in urban areas [3, 4, 5, 6]
and it is generated mainly by vehicles and their com-
ponents, such as engine, tires and exhaust [7]. Each in-
dividual source has its own spectral and directional pat-
terns, which must be modelled in order to be enclosed to
the auralization system database.

The ongoing project “Auralization of Urban Areas” is
held in cooperation with the Institute of Technical Acou-
stics from RWTH Aachen University, whose objective is
to model vehicular sources inside a simulation tool. At
the first stage, the sources are modelled by acquiring ve-
hicle noise emissions, among other noise sources, with
a microphone array. Then the relevant data is selected
by applying signal processing techniques to filter the re-
corded signals, both in time and space. However, spatial
filtering requires the knowledge of position, or at least di-
rection, of the desired source. This work focuses in deter-
mining the most appropriate method to identify direction
of arrival for vehicular noise sources.

Direction of Arrival Estimation Methods
The direction of arrival estimation methods used in this
work are described in this section. The algorithms use
two microphone signals in order to estimate the time dif-
ference of arrival (TDoA) between signals and the sour-
ce direction of arrival (DoA). The two-microphone setup
under plane-wave propagation assumption is sketched in
Figure 1, which indicates the geometric relation between
TDoA and DoA.

Abbildung 1: Two-microphone setup for delay τ0 and direc-
tion of arrival φ estimation.

The recorded raw data is fed into the system depicted in
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Figure 2. Firstly, in pre-processing block, the input signal
length, sample rate and frequency spectrum is adjusted
towards enhancing DoA algorithms performance. This is
related to the source bandwidth and aims to avoid un-
desired noise. Each method provide different approaches
for DoA estimation. Then, a curve fitting algorithm hel-
ps to separate multiple sources. Finally, DoA estimation
method is implemented in the last block and the user
must decide which among the methods is to be used in
the current estimation.

Abbildung 2: System schematic diagram.

Generalized Cross-Correlation
The Generalized Cross-Correlation (GCC) [8] method
uses correlation function properties and the assumption
that signals arriving in both microphones are identical,
except for a time delay, to find a TDoA estimate. Cross-
correlation function provides an idea of similarity bet-
ween signals as a function of the lag τ applied to one of
them. For two identical signals separated by a time delay
τ0, the correlation reaches its peak when the lag τ equals
the real delay τ0. Therefore, a peak detector can be used
for delay estimation. Generalized cross-correlation func-
tion differs from regular cross-correlation due to a fac-
tor introduced by previous signal filtering. This pre-filter
helps at sharpening function peaks and consequently fa-
vouring their detection and TDoA estimation.

Interaural Time Differences
The Interaural Time Differences (ITD) algorithm [9] is
inspired by the human auditory system, which is able to
identify time differences between the sound at both ears
and use it to locate sound sources. The algorithm gene-
rates a set of all possible delays, limited by the distance
between microphones and by the chosen angular discreti-
zation for DoA. The delays are applied, in the frequency
domain, to the original signals and a coincidence detector
checks which phase difference compensates the real delay
τ0.

Least Mean Square
The Least Mean Square (LMS) algorithm uses adaptive
finite impulse response (FIR) filters for TDoA estimation
[10]. One microphone signal is filtered by an FIR system,
which has its coefficients adapted in order to minimize
the least mean square error between the filter output si-
gnal and the second microphone signal. After adaption,
the highest valued coefficients index indicate the delay
between signals.

Adaptive Eingenvalue Decomposition
Alternatively, adaptive filters might be used to estimate
the impulse response between the source and each mi-
crophone, as in the Adaptive Eingenvalue Decompositi-
on (AEVD) method [11]. The eigenvalue decomposition
is performed in the covariance matrix containing space
and temporal correlation between the two microphone
signals.

Minimum Variance Distortionless Re-
sponse
The Minimum Variance Distortionless Response
(MVDR) method is an adaptive beamforming approach
which seeks to minimize the variance of the recorded
signal subject to the restriction that the signal is not
distorted. Given that the noise and the desired signal
are uncorrelated, the variance of the recorded signal is
equal to the sum of the variances of the desired signal
and the noise. Therefore, the MVDR algorithm aims to
minimize this sum, hence mitigating the noise effect [12].

DoA Esimation Process
In general, the output of the DoA block is not yet a di-
rection of arrival, but a two-dimensional function of time,
t, and of inter-microphone delay, τ , as illustrated in Fi-
gure 3a. The function peaks indicate the TDoA associa-
ted with the direction of arrival. The originally proposed
DoA estimation methods would simply find the function
maximum value for each time instant t and define the
related direction as the DoA estimation. Such a strategy
is sufficient in single-source scenarios, where the desired
sound source is isolated or prevails over others, which is
not the case with vehicular noise sources.

Traffic noise emissions are mainly accredited to the ve-
hicle engine, tires and exhaust, and such multiple-source
contribution is visible in the output function of the DoA
estimation block, as shown in Figure 3a, where higher
values are indicated in darker colours. Two parallel peak
regions are visible in the figure, separated by about 0.19
s. At a 49 speed this is equivalent to a distance around
2.5 m, which is similar to the wheelbase of vehicles. The-
refore, combined with literature reports that tire noise
predominates over other emitted noises [7], this coinci-
dence of source separation leads one to assume that the
two visible peaks come from the front and rear wheels of
the car.

Abbildung 3: Illustration of the DoA estimation procedure.

The curve fitting block is added to the system as an ef-
fort to distinguish between multiple emissions. The two-
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dimensional function generated by the chosen DoA algo-
rithm is first treated as an image, in which morphologi-
cal and thresholding operations are applied, resulting in
the binary image shown in Figure 3b. From such bina-
ry image, nonzero data are separated into two vectors,
representing the two visually distinguishable sources. Fi-
nally, a curve is fitted to the data in each of the two
vectors, using a model derived for the known TDoA be-
haviour. Thus, the curve fitting block provides TDoA
estimates for two sources in parallel motion.

Experiment
The scenario of the experiment conducted to acquire ve-
hicle noise emissions is illustrated in Figure 4a. It consists
in 11 microphones arranged in a 0.25-m-diameter circle
that are responsible for recording sound pressure infor-
mation. The array configuration is depicted in Figure 4b.
Only eleven microphones were used, rather than twelve
equally spaced, due to a limitation in the available signal
acquisition module, which only supported eleven inputs.

Abbildung 4: Schematic depiction of the experiment.

Four different passenger cars were used in the experiment
trials, as detailed in Table 1, as well as three different dri-
vers. Each trial consisted in one car passing by the mi-
crophone array at constant speed of around 30, 50, 60 or
70 km/h or accelerating. The exact speed was measured
with a GPS equipped device placed inside the vehicle.
The accelerating tests aimed to gather information from
engine noise emissions, since tire noise predominance was
observed in previous constant speed tests. The experi-
ment took place at the Brazilian National Institute of
Metrology (INMETRO), in a quiet location, resulting in
a negligible background noise level.

Tabelle 1: Vehicles used in pass-by tests.

Car ID Car Model Transmission

1 Volkswagen Gol 1.0 Manual
2 Jeep Renegade 1.8 Automatic
3 Mitsubishi ASX 2.0 Automatic
4 Hyundai Creta 1.6 Automatic

Results
Each DoA algorithm provides a different function as out-
put, which is used for curve fitting and displayed as back-
ground image. GCC block output is the generalized cross-
correlation function between microphone signals, while
ITD provides a histogram map summed over frequency
and the adaptive methods, LMS and EVD, return the

filter coefficients map. MVDR block output is the cross
power spectral density function between the microphone
signals.

Typical outputs of the TDoA estimation algorithms are
shown in grayscale on the bottom layer of each image of
Figure 5. The theoretical and estimated TDoA curves are
superimposed on these images, with the estimated curves
obtained by the curve fitting algorithm applied to each
grayscale image. As the example in Figure 5 suggests,
GCC and MVDR were, in general, the most successful
methods in providing TDoA curves which approached
the theoretical model and the visible function peaks.

Abbildung 5: TDoA estimated (blue) and theoretical model
(red) curves for each method, for Car 2 at 51 km/h. Back-
ground grayscale images are the outputs of the TDoA esti-
mation algorithms.

From the estimated TDoA curves, it is possible to ob-
tain the distance between the sources for the instant they
are in front of the microphone array, which is indicative
of the distance of the front-rear axle. This value can be
compared to the actual wheelbase as a measure of the
performance of the algorithm. The estimated wheelbase
values extracted from the TDoA curves are given in Table
2 for each vehicle, together with the corresponding actu-
al values. The ITD method was not able to distinguish
the two sources and, therefore, the estimated direction of
arrival was almost the same for both sources, resulting
in the estimated separation practically equal to zero ob-
served in the table. A similar behaviour can be observed
in the results of the LMS algorithm, where the estima-
ted values were significantly smaller than the actual ones
for the four vehicles. The EVD algorithm, in addition to
presenting unstable and sensitive data behaviour, provi-
ded larger distance estimates between noise sources than
expected. The estimates obtained with GCC and MVDR
were close to the true wheelbase values and did not show
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significant changes in the accuracy for different vehicles.

Tabelle 2: Wheelbase estimated by the distance between fit-
ted curves and real values.

Car ID
1 2 3 4

GCC 2.4 ±0.84 2.11 ±1.32 2.79 ±1.57 2.92 ±0.91
ITD 0.08 ±0.1 0.06 ±0.09 0.07 ±0.08 0.05 ±0.07
LMS 0.6 ±0.18 0.56 ±0.56 1.39 ±1 1.02 ±0.89
EVD 4.41 ±2.54 9.89 ±21.69 5.19 ±3.57 8.02 ±9.13
MVDR 2.08 ±0.43 2.19 ±1.09 2.62 ±0.61 2.17 ±0.45
Real 2.47 2.57 2.67 2.59

Table 3 presents the mean absolute error between measu-
red and estimated speeds, chosen as an additional perfor-
mance comparison criterion. The estimated values were
obtained from the curve fitting coefficients. The GCC me-
thod resulted in the smallest errors for all speeds, whereas
the ITD provided the largest errors for the three lower
speed ranges and the EVD for the higher speed range. All
of the methods presented a better performance for lower
speeds and achieved the lowest speed estimation errors
in the 30 - 40 km/h range.

Tabelle 3: Mean absolute error between measured and esti-
mated speeds and corresponding standard deviations.

Speed (km/h)
30 - 40 40 - 50 50 - 60 60 - 70

GCC 2.17 ±1.51 3.06 ±1.69 3.86 ±1.47 3.74 ±1.62
ITD 12.62 ±2.74 16.49 ±1.34 23.06 ±8.61 18.8 ±6.51
LMS 3.05 ±1.42 4.59 ±2.32 6.09 ±0.8 7.67 ±4.74
EVD 9 ±6.71 17.26 ±8.37 17.98 ±9.43 27.5 ±20.8
MVDR9.26 ±1.9 15.11 ±1.55 12.79 ±1.8 14.88 ±4.1

According to Tables 2 and 3, GCC and MVDR methods
proved to be suitable choices for DoA estimation of ve-
hicular noise sources.

Conclusions
This work sought a method capable of locating typical
noise sources of an urban environment. Five direction of
arrival estimation methods were tested for this purpose.
The methods were originally proposed for single-source
speech signal tracking and were modified to fit the urban
noise application by identifying multiple sources.Both the
Interaural Time Differences and the Least Mean Square
methods were unable to distinguish differentnoise sources
in a vehicle. The Adaptive Eigenvalue Decomposition al-
gorithm results demonstrated a greatvariation in per-
formance for different test conditions. The Generalized
Cross-Correlation and the MinimumVariance Distortion-
less Response algorithms presented the best performan-
ces among the five tested methods forthe chosen evalua-
tion criteria. All methods showed better performances at
lower speeds.

Acknowledgement
This work was supported by Coordenação de Aper-
feiçoamento de Pessoal de Nı́vel Superior (CAPES).

Literatur
[1] W. H. Organization and Others, “Burden of disea-

se from environmental noise: Quantification of heal-
thy life years lost in Europe”, in Burden of disease
from environmental noise: quantification of healthy
life years lost in Europe, p. 126, 2011.

[2] M. Vorländer, Auralization: fundamentals of acou-
stics, modelling, simulation, algorithms and acou-
stic virtual reality. Springer Science Business Media,
2007.

[3] P. H. Zannin, A. Calixto, F. B. Diniz, and J. A. Fer-
reira, “A survey of urban noise annoyance in a large
brazilian city: the importance of a subjective analysis
in conjunction with an objective analysis”, Environ-
mental Impact Assessment Review, vol. 23, no. 2, pp.
245 - 255, 2003.

[4] M. S. Hammer, T. K. Swinburn, and R. L. Neitzel,
“Environmental noise pollution in the United States:
developing an effective public health response”, En-
vironmental health perspectives, vol. 122, no. 2, pp.
115 - 119, 2013.

[5] J. C. Seong, T. H. Park, J. H. Ko, S. I. Chang, M.
Kim, J. B. Holt, and M. R. Mehdi, “Modeling of road
traffic noise and estimated human exposure in Fulton
County, Georgia, USA”, Environment International,
vol. 37, no. 8, pp. 1336 - 1341, 2011.

[6] C. Nugent, N. Blanes, J. Fons, M. Sainz de la Maza,
M. Ramos, F. Domingues, A. van Beek, and D. Hout-
huijs, “Noise in Europe 2014”, European Enviroment
Agency, vol. 10, p. 2014, 2014.

[7] D. Ouis, “Annoyance from road traffic noise: a re-
view”, Journal of Environmental Psychology, vol. 21,
no. 1, pp. 101 - 120, 2001.

[8] C. Knapp and G. Carter, “The generalized correlati-
on method for estimation of time delay”, IEEE Tran-
sactions on Acoustics, Speech, and Signal Processing,
vol. 24, no. 4, pp. 320 - 327, 1976.

[9] C. Liu, B. C. Wheeler, W. D. OBrien Jr, R. C. Bil-
ger, C. R. Lansing, and A. S. Feng, “Localization of
multiple sound sources with two microphones”, The
Journal of the Acoustical Society of America, vol. 108,
no. 4, pp. 1888 - 1905, 2000.

[10] F. Reed, P. Feintuch, and N. Bershad, “Time delay
estimation using the LMS adaptive filter-static beha-
vior”, IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 29, no. 3, pp. 561 - 571, 1981.

[11] J. Benesty, “Adaptive eigenvalue decomposition al-
gorithm for passive acoustic source localization”, The
Journal of the Acoustical Society of America, vol. 107,
no. 1, pp. 384 - 391, 2000.

[12] S. Vorobyov, “Principles of minimum variance ro-
bust adaptive beamforming design”, Signal Proces-
sing, vol. 93, no. 1, pp. 3264 - 3277, 2013.

DAGA 2020 Hannover

293


