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Introduction
The mechanisms underlying the human ear’s ability to
detect very soft sounds and extremely small differences
in sound intensity and frequencies across a wide dynamic
range are still not fully understood. The high sensitiv-
ity can not be achieved by passive mechanisms, why the
presence of an active mechanical feedback mechanism,
the ”active process”, is often assumed in modelling stud-
ies [8]. This assumption is supported by the discovery of
spontaneous otoacoustic emissions (SOAEs) [4]. SOAEs
are sound signals that can be measured outside the ear
in the absence of external stimuli, pointing towards self-
sustained activity in the inner ear, possibly linked to
outer hair cell motility [1]. An interesting characteris-
tic of SOAEs are the narrow distributions of energy in
the spectra of the emitted signal. SOAEs are vulnerable
to a damage of outer hair cells and tend to disappear
even for mild hearing impairment [6].
A model that has been of main interest in the investi-
gation of the active process in the inner ear is a system
of nonlinear, active, coupled limit cycle oscillators [7].
These models can account for many key aspects of the
phenomena observed in SOAEs, including effects of en-
trainment and synchronisation. Even though systems of
coupled oscillators and SOAEs are well investigated, the
methods to quantify and describe the phenomena ob-
served in theoretical studies of coupled oscillators and
experimental studies of SOAEs differ. Because only one
state variable is available for SOAEs (the pressure in
the ear canal) the assumption of a periodic oscillation
is commonly made, even though nonlinear and active os-
cillators often shown non-harmonic dynamics. In this
paper, a model- and analysis framework inspired by pre-
vious models of coupled, nonlinear, active oscillators is
described to link phenomena of coupled, nonlinear oscil-
lators to SOAEs.

Methods
The model

The modeled system consisted of N = 100 Van der Pol
oscillators, each described by the equation of motion:

ẍ = −ω2x+ μ(1− x2)ẋ (1)

where x is the displacement from equilibrium, ẋ and ẍ
are the velocity and acceleration, respectively. The fac-
tor μ scales the nonlinearity of the system. To include
tonotopy, a linear gradient in the eigenfrequency was in-

troduced in the row of oscillators by

ωn =

(
ωmin +

(n− 1)ωmax

N − 1

)
· εn (2)

n ∈ {1...N} εn = N (1, ν) (3)

The value of ωn was varied stochastically for each oscil-
lator by a random variable drawn from a normal distri-
bution N with mean one and standard deviation ν to aid
generation of clusters [5].
The force between two coupled neighbouring oscillators
is given by

Fn = dn+1(ẋn+1 − ẋn) + kn+1(xn+1 − xn) (4)

+dn(ẋn−1 − ẋn) + kn(xn−1 − xn) (5)

where the dissipative and reactive coupling are described
by d and k, respectively. Positions x0 and xN+1 were
held constant to zero.
Because the phase plane trajectory of a Van der Pol os-
cillator varies both with μ and ω, a scaling of the time
differential was introduced by a scaling of μ to keep the
ratio ω/μ constant and to result in identical phase tra-
jectories of all N oscillators. Combining (1), (4) and an
external driving force, Fext, yields a set of first order dif-
ferential equations for numerical treatment:

dxn

dt
= ωnẋn (6)

dẋn

dt
= −ωnxn + ωnμ(1− x2)ẋn + Fn + Fext (7)

Analysis
Steady state criteria

The dynamics of the system was simulated for time inter-
vals of length Tint and stopped as soon as a steady state
of the system was reached. The energy of each oscillator
was approximated by:

En(m) =

(m+1)Tint∑
t=mTint

xn(t)
2 , m = 0, 1, 2... (8)

If En(m+1) did not differ from En(m) by more than ten
percent for all n, the system was defined to be in steady
state.

Frequency, cluster and phase analysis

Three methods were used to analyse the frequency of
each oscillator: 1) “Fourier mean method” (Ωf,mean),

DAGA 2020 Hannover

110



computed as the weighted mean of all frequencies Ωi in
the Fourier domain, 2) “Fourier peak method” (Ωf,peak),
computed by localising the frequency with the highest
normalised peak m′ in the Fourier domain, and 3) the
“Zero crossing mean method” (Ωzc,mean) where the fre-
quency was determined from the inverse of the mean dis-
tance between zero crossings Δtzc in the time domain.
Two rules for cluster localisation in the system are set
up. Firstly, steps in frequency between oscillators con-
sidered to be in the same cluster should be smaller than
half the size of the steps if all steps between the high-
est and lowest frequency were the same size. Secondly, a
cluster consists of minimum 4 oscillators.
The phase coherence of the oscillators was computed us-
ing the estimated oscillation period combined with the
amplitude and velocity of each oscillator. The normalised
[displacement, velocity]-vectors after each oscillation pe-
riod were added in the phase plane and divided by the
number of the oscillation periods.

Numerical evaluation

The coupled equations of motion were solved using MAT-
LAB’s built in ODE45 solver. For all simulations, values
in (3) were set to

N = 100 , ωmin = 2π , ωmax = 5 · 2π (9)

The sampling frequency was set to fs = 1000Hz and the
maximum step size used by ODE45 to 0.01s. The simu-
lation was run in intervals of length Tint = 20s until the
system met the steady state criteria or until the maxi-
mum simulation time of 1000s was reached. All oscilla-
tors had initial displacement and velocity equal to 0 and
were excited by a short rectangular pulse at time t = 0s
with width w = 0.05s and unity height.
The systems were analysed for parameter combinations
P = {d, k, μ, ν}. To get a more explicit understanding,
the systems were coupled by either dissipative or reactive
coupling elements of varying strength. The following pa-
rameters were used for the simulations:

d ∈ {0, 1, 2, 5, 10, 20, 50, 100}, (10)

k ∈ {0, 1, 2, 5, 10, 20, 50, 100}, (11)

μ ∈ {0.5, 1, 1.5 ... 4, 4.5, 5}, (12)

ν ∈ {0, 0.1} (13)

In the absence of stochastic variations of ωn (i.e., ν = 0)
the system was simulated once, otherwise 25 times. The
system with dissipative coupling Pd = {100, 0, 1, 0} and
the system with reactive coupling Pk = {0, 20, 1, 0} will
be described in more detail since these systems showed
the most comprehensive clustering behaviour.
To analyse synchronisation effects by an external driving
force, a force Fext = α sin(2πft) was applied to all oscil-
lators, with α the amplitude and f the frequency of the
sinusoidal force.

Results
Dissipative coupling

Figure 1A shows the spectral analysis of system Pd in
steady state (reached after 80s of simulation, see Fig-

ure 1B). Clusters appeared at frequencies between 1 Hz
to 5.5 Hz with equal spacing and size. This representa-
tion shows harmonics of each oscillator at frequencies of
neighbouring clusters. The clusters overlap at the clus-
ter edges, indicating two dominant frequencies for these
oscillators.
When extracting clusters using Ωf,peak (Figure 1C), all
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Figure 1: System Pd. A) Spectral representation of the
system dynamics. The spectrum for each oscillator was nor-
malised to its maximum value. B) State of each oscillator as
function of time. Steady state criteria are met for values of
1 and are not met for values of 0. C) Clusters found when
analysed using Ωf,peak. D) Clusters for analysis with Ωzc,mean.

oscillators were assigned to a cluster. Analysis of the
same data with Ωzc,mean (Figure 1D), resulted in a collec-
tion of oscillators that was not discrete but more smooth
with some oscillators in between clusters, consistent with
[5]. The Ωf,peak only selects the dominating frequency in
the spectrum, while the Ωzc,mean detects the whole spec-
trum of frequencies. For oscillators in the bordering re-
gion between two clusters, two frequencies can be almost
equally strong in the spectrum, which will only be caught
by the Ωzc,mean.
The number and size of the found clusters depended on
coupling strength (dn), nonlinearity scaling μ and the
frequency analysis method. Larger clusters were found
for stronger coupling and for higher degrees of nonlinear-
ity. The mean cluster size and the synchronisation were
slightly larger when using Ωf,peak compared to Ωzc,mean.
The dynamics of the oscillators within a cluster or at

the corners of a cluster are shown in Figure 2 for the
Ωzc,mean frequencies found for system Pd. The phase co-
herence in the middle of clusters is much higher than
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Figure 2: System Pd, analysed in steady state. Analysis of
the phase coherence by using the zero crossing mean method.
The standard deviation of the frequencies is highest for oscil-
lators between clusters. Furthermore, the phase coherence is
highest in the middle of clusters and close to zero at the steps
between clusters.

at the borders, where the uncertainty is correspondingly
higher. The temporal dynamics showed a clear beating
of one oscillator located between two clusters, consistent
with two dominant frequencies as indicated in Figure 1A.

Reactive coupling

Figure 3 shows the spectral analysis of a system using re-
active coupling. Two big clusters with frequencies around
fl = 3.5Hz and fh = 9Hz are apparent in Figure 3A. The
cluster frequency around 9 Hz is higher than the max-
imum eigenfrequency in the uncoupled system, indicat-
ing a contribution of the coupling elements to the domi-
nant frequency of the oscillators. In between the clusters,
the oscillators show a complex distribution of energy and
no consistent clustering behaviour. Consistent with the
results using dissipative coupling, clusters tended to be
larger for higher amount of coupling and higher degree of
nonlinearity, but the behaviour was much more complex.

Synchronisation with harmonic driving force

To analyse phase relations before and after synchroni-
sation, the central cluster of system Pd was used. This
cluster consisted of 11 oscillators with a mean frequency
of 3.3 Hz. The phase analysis of oscillators in the cluster
is shown in the absence (A) and presence (B) of an exter-
nal driving force in Figure 4. In Figure 4A, the phase is
shown for each time period p = 1/3.3s for each oscillator.
The first and last oscillators showed a much wider spread
of phases compared to the central oscillator. The spread
of phase is consistent with the estimate of the phase co-
herence. Furthermore, the mean of the phase distribution
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Figure 3: Same as Figure 1, but for system Pk with reactive
coupling.

changed along the oscillators, indicating phase shift.
In the presence of an external driving force with fre-
quency 3.25 Hz and amplitude 10, the cluster grows in
size and the phase distributions of all oscillators become
narrower. Especially in the middle of the cluster, the
phases collapse into a very narrow region around the
mean, indicating a very stable oscillation period. Neigh-
bouring oscillators show a slight phase shift, similar to
the result in the absence of the external driving force.

Discussion
For systems with dissipative coupling, similar cluster pat-
terns compared to both [8, 3, 2] appeared in the systems.
Although no frequency analysis method has been defined
by [8], their results show a high similarity to the results in
the current study using Ωf,peak. The result that stronger
coupling results in larger clusters can be explained by
assuming that the interaction across oscillators happens
exclusively through this parameter. Given that cluster-
ing is an effect of active, nonlinear oscillators, it is also
intuitive that increasing the amount of nonlinearity in-
creases the effect of clustering, leading to larger clusters.
Regarding the reactive coupling, similarities to the data
presented by [2] can be observed in the spectral represen-
tation in terms of some clearly defined clusters and some
more blurry areas between the clusters. Consistent with
this, [3] found that the number of clusters decreases for
bigger values of the reactive coupling coefficient, which
might be connected to the increasing mean cluster size
documented in this paper.
The often neglected information of oscillator clusters is
the phase relation across oscillators within one cluster.
With the results in Figure 4 it becomes clear that even
though oscillators might be entrained to a specific fre-
quency, the local properties of the oscillators will have
an effect on the phase relation within a cluster. For phe-
nomena that represent the compound result of a whole
cluster like SOAEs measured in the ear canal, this phase
shift will have important consequences on the measured
magnitude. The measured magnitude can hence not be
used to estimate the size of the cluster because the ad-
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Figure 4: A) Phase analysis of the central cluster in the system Pd in steady state. The cluster consisted of oscillators n = 42
to n = 52. The mean frequency of the cluster was 3.3 Hz. The phase of each oscillator was investigated by marking points
in phase space for each time period p = 1/3.3 s. Same legend as in 2E. B) Phase analysis of central cluster in the system Pd

when in steady state while being synchronised by external force with frequency f = 3.25 Hz and amplitude α = 10. The cluster
consisted of oscillators n = 33 to n = 62.

dition of phase-delayed components will reduce the re-
sulting compound amplitude, in the extreme case to zero
for components in anti phase. Phase distributions are,
in general, more narrow for oscillators located centrally
in a cluster than for oscillators remote from the cluster
center. This might be connected to frequency difference
between the cluster frequency and the eigenfrequency of
the local oscillator. An external driving force heavily re-
duces the width of the phase distributions, making them
very narrow for oscillators in the center of the cluster.
It is, however, interesting to note that the phase shift of
oscillators within a cluster remains the same as in the
absence of the external driving force.

Conclusions
A system of coupled Van der Pol oscillators with a fre-
quency gradient showed clustering effects for both dis-
sipative and reactive coupling. The number of and dis-
tance between clusters is dependent on the magnitude
and type of the coupling between oscillators. Hence, the
distance observed between SOAEs might provide infor-
mation about the type and strength of coupling in the in-
ner ear. The size and frequency of clusters depends, how-
ever, on the metric used to quantify the oscillation period
of each oscillator. Finally, oscillators within one cluster
showed a linear phase gradient. Hence, a better under-
standing of the parameters defining this phase gradient
and the interaction with the size and frequency distance
of clusters is required to be able to link these properties
to analogue characteristics observed in SOAEs.
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