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Introduction 

The monitoring of speech intelligibility and listening effort of 
TV audio material is necessary for quality assurance of TV 
productions. Ensuring (almost) 100% speech intelligibility is 
not sufficient, since even with such high speech intelligibility, 
the listening effort required for comprehension can be 
unacceptably high in the long run. Listening effort is therefore 
a more sensitive and relevant parameter for quality assurance 
of broadcast material than speech intelligibility. Its evaluation 
by individual persons is very subjective, i.e., it can be 
individually very different so that formal listening tests with 
many test listeners are required to obtain reliable and 
reproducible results. In practice, however, such tests are 
usually too costly and time-consuming. Technical methods 
for objective evaluation or prediction of the perceived 
listening effort would therefore be a valuable tool for quality 
assurance of TV productions, but also for other applications 
such as the evaluation of signal enhancement algorithms, e.g. 
in hands-free telecommunication devices.  

Basically, reference-based ("double-ended") and reference-
free ("single-ended") methods are suitable for this purpose. 
Reference-based methods compare the test signal to be 
evaluated (e.g. speech with background noise) with the 
undisturbed speech signal as reference. This approach is used, 
for example, in instrumental speech quality assessment by the 
ITU-T standard method POLQA [1]. A similar approach is 
based on the comparison of useful and interfering signal 
(spectra), as applied, e.g., in the Speech Intelligibility Index 
(SII) [2]. A disadvantage of these approaches is that the clean, 
undisturbed speech signal must be available or the target and 
interfering signal must be available separately, which is not 
always the case (e.g., in TV mixes received by the end user). 
Even if, as in the mixing process in TV production, the speech 
and background sound tracks are separate, it is possible that 
the speech track may already contain disturbances such as soft 
background noise, reverberation, poor articulation and/or 
distortion that affect the listening effort. Such disturbances of 
the reference signal would not be detected by reference-based 
methods, because the reference signal, as it is, defines the 
optimal quality or minimum listening effort. Therefore, we 
proposed a reference-free method for the prediction of 
listening effort of German TV broadcast audio material in [3]. 
The method itself was presented for the first time in [4]. The 
variant presented in [3] was trained and evaluated on German 
speech only. This paper presents a study for which the 
proposed method was evaluated with English audio material 
taken from English and US-American movies and compared 
to experimental data collected with native listeners. As will be 
described in the following, a slight modification of the method 
was necessary in order to become capable of accurately 
predicting the perceived listening effort of English speech. 

 

 

 

Figure 1: Posteriorgrams of clean speech (top) and the same 
speech utterance with additional noise (SNR = 5 dB, bottom).  

 

Method 
The basic approach of the method is to use a part of an 
automatic speech recognition (ASR) system, i.e. the 
processing up to the deep neural network (DNN) which 
decides for the phoneme classes. Disturbances of speech such 
as distortions or background noise lead to an increased 
recognition uncertainty of the ASR system, similar to human 
speech perception. This uncertainty can be detected and 
quantified in the recognition system as follows: The deep 
neural network produces phoneme posterior probabilities 
("posteriorgrams"). A posteriogram represents the temporal 
course of the probability for the activity of individual 
phonemes (see Fig. 1). Disturbances of speech lead to the 
posteriorgrams being "smeared" (see Fig. 1, lower panel). The 
degree of smearing is quantified by a mathematical measure. 
This measure is used as a predictor of listening effort. The 
generation of the posteriorgrams and the measure for 
quantifying the degree of smearing are described below. 
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Posteriorgram generation 

The same ASR system as in [5] was used to generate the 
posteriorgrams, which will therefore only be briefly described 
here (for details see [5]): 

Short-term energies of a 40-channel Mel filter bank are used 
as acoustic features. Splicing is applied, i.e. in each filter bank 
channel, -15...+15 blocks with time shift of 10 ms are used (= 
310 ms temporal context window) are combined and passed 
to a deep time-delay neural network (TDNN) as a feature 
vector. This deep TDNN has seven hidden layers with 700 
rectified linear units each. The output layer consists of 6448 
neurons, i.e. one per triphone (a triphone is a sequence of three 
phonemes). The network was trained approx. 1000 hours of 
clean speech. This database was extended to about 8000 hours 
by augmentation, i.e. mixing the clean speech segments with 
different types of noise at different SNR. 

Posteriorgram measure 

From the output of the deep TDNN, i.e. the posteriorgram, the 
"mean temporal distance" or "M-Measure" was calculated 
according to Hermansky et al. [6]. The M-Measure calculates 
the average mathematical distance between two vectors of 
phoneme posteriors pt-Δt and pt (i.e. two columns of the 
posteriorgram) with a temporal distance Δt:  
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T is the time length of the analyzed posteriorgram (which is 
equal to the length of the analyzed audio file, i.e. about 10 s 
in this study). D is the symmetrical Kullback-Leibler 
divergence between two vectors x and y with the components 
x(i) and y(i): 
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In this study, N was equal to the dimensionality of the TDNN 
output layer (6448) and M was calculated for Δt = 350 to 
800 ms (in 50 ms steps) and then averaged to give the final 
listening effort predictor 𝑀ഥ. This predictor was then mapped 
onto the same response scale as used in the subjective 
listening tests to allow for a quantitative comparison. 

Speech activity detection 

The posteriorgram calculation was only performed for 
sections of the audio signal in which speech activity was 
detected. To this end, an automatic speech activity detection 
(SAD) was employed, which was also based on a deep neural 
network that had also been trained with (amongst others) TV 
audio signals [7]. Mel-Frequency Cepstral Coefficients 
(MFCCs) are used as feature vectors at the input of the SAD’s 
neural network. (For details on automatic speech activity 
detection see [7].) 

Listening effort data 
Stimuli 
39 audio excerpts of about 10 s each were taken from English 
and American movies; 19 containing clean speech, 20 
containing background sounds without speech. From these 39 

excerpts, 140 audio clips were mixed with various SNRs in 
order to cover a broad range of expected listening efforts. 
Moreover, six sentences from an American English speech 
intelligibility test (matrix test, [8]) mixed with speech-
simulating noise were added, so that the measured listening 
efforts could be compared to the results from an earlier study 
[9], which contained the same six stimuli. 

Subjects and rating procedure 
Fifteen normal hearing subjects aged 22-44 years (median = 
27 years), six male, nine female, participated in the study. 
They rated the perceived listening effort of the 146 stimuli 
using a 14-step rating scale with eight named and six unnamed 
categories (Fig. 2) on a touch screen. The subjects were asked: 
“How much effort do you have to spend to understand the 
speech?” The stimuli were presented via headphones 
(Sennheiser HD 650) in a sound attenuating booth. Video was 
not provided. The selected rating categories were mapped to 
numerical values from 1 (corresponding to the rating category 
“effortless”) to 14 (“can't understand the speech at all”). 

 

 

Figure 2: Listening effort rating scale (adapted from [10]) 

 

Results 
Subjective listening effort ratings, averaged across subjects 
(LE-MOS - „Listening Effort Mean Opinion Scores“) are 
plotted vs. the corresponding values of the listening effort 
predictor 𝑀ഥ in a scatter plot shown in Fig. 3. A linear relation 
between LE-MOS and 𝑀ഥ values could be observed. The linear 
(Pearson) correlation coefficient is  
r = 0.87.  
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Figure 3: Relation between averaged subjective listening effort 
ratings LE-MOS for English audio material (ordinate) and 
corresponding values of the listening effort predictor 𝑀ഥ  (abscissa). 
The black dotted line represents the best fit after linear regression. r 
and rs indicate Pearson’s correlation coefficient and Spearman’s 
rank correlation coefficient, respectively. 

 

Mapping 𝑴ഥ  to LE-MOS for German and English speech 

In order to actually predict LE-MOS values by the proposed 
method, the objective measure  𝑀ഥ had to be mapped to the 
LE-MOS scale. A mapping function f: 𝑀ഥ LE-MOS was 
derived empirically by means of linear regression. For 
German speech, the listening effort data presented in [3] were 
used. Fig. 4 shows the relation between LE-MOS and 𝑀ഥ for 
this German dataset consisting of more than 400 data points. 
In comparison to the results for the English dataset shown in 
Fig. 3, the  𝑀ഥ values spanned a larger range towards higher 
values for German speech, up to about 𝑀ഥ=35, whereas for 
English speech, the maximum value of 𝑀ഥ was about 25. 
Consequently, the relation between LE-MOS and 𝑀ഥ values 
was steeper for English speech than for German speech.  

 

 

Figure 4: As Fig. 3, but for the German dataset presented in [3] 

 

Applying the new, steeper mapping function to the 𝑀ഥ values 
of the English dataset, the relation between transformed 𝑀ഥ 
values and LE-MOS shown in Fig. 5 is obtained. 

 

Figure 5: LE-MOS prediction results for the English dataset. The 
LE-MOS predictions are obtained by applying a new linear 
transformation to 𝑀ഥ . RMSE: Root Mean Squared Error between 
actual and predicted LE-MOS. Black, dotted line: Perfect prediction, 
i.e. predicted LE-MOS = LE-MOS.  

 

Discussion 
The results show that the single-ended method for listening 
effort prediction also works reasonably well for English audio 
material - although the used ASR system was trained with 
German speech data - if a different linear function for 
mapping the metric 𝑀ഥ to the subjective listening effort scale 
is used. The necessity for using a steeper mapping function is 
a consequence of the fact that the range of 𝑀ഥ values is smaller 
for English speech than it is for German speech. The 
maximum 𝑀ഥ values for speech requiring minimum listening 
effort (i.e., clean speech) are markedly smaller in case of 
English speech compared to German speech (25 vs. 35, cf. 
Figs. 3 and 4). This might be explained by less clear posterior-
grams for clean English speech than for clean German speech, 
meaning less distinct, less high phoneme probabilities, which 
is a consequence of the mismatch between German ASR 
training data and English test data. The sets of German and 
English phonemes have considerable overlap and similarity, 
but they are not identical. Apart from a steeper relation 
between 𝑀ഥ and LE-MOS, another effect of the higher 
uncertainty of the ASR system in case of clean English speech 
compared to German speech can be observed in the larger 
variance of predicted LE-MOS values for low actual LE-MOS 
values (see Fig. 5). For some audio clips with actual LE-MOS 
values near 1, the corresponding predicted values are above 6. 
Such erroneous high predicted LE-MOS values might be 
caused by the mismatch between German and English 
phonemes. Despite these effects, the overall prediction 
accuracy as indicated by correlation values and RMSE is 
comparable to German audio material, indicating that the 
proposed approach can be applied to English broadcast 
applications, e.g., automatic listening effort monitoring of 
movies or TV material, provided that the language mode 
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(German/English) is adapted accordingly. At present, this has 
to be set manually, but in future versions this might be done 
by means of an automatic language recognizer.   

Although the present results indicate that the proposed 
approach can be extended to English without adapting the 
underlying ASR engine to the target language, care should be 
taken when considering a further generalization to other 
languages. It is possible for the observed differences to 
become larger if languages with more dissimilar phoneme sets 
like, e.g., Chinese language, are considered. In such cases, the 
underlying ASR system of the method might have to be re-
trained with the target language.  

Conclusions 

The single-ended method for assessing the listening effort of 
German TV broadcast audio material presented in [3] also 
works for English movie audio, if a different (steeper) 
mapping function f: 𝑀ഥ LE-MOS is used. The computation 
of 𝑀ഥ is not changed. For the application of the method to other 
languages, further, individual mapping functions have to be 
derived from listening tests. For languages with quite 
different sets of phonemes (like Chinese), however, this 
approach might not work anymore. Instead, the underlying 
ASR part of the method might have to be retrained with the 
target language. 
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