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Introduction
Communication disorders, such as voice anomalies can
have a severe effect on the affected persons’ quality of
life, especially for heavy occupational voice users, e.g.
teachers, and can even lead to isolation and depression
[1]. In Fig. 1, the anatomic structures involved in the
human voice are depicted. Due to a pressure difference
between the lungs and the mouth there is the tracheal
airflow through the vocal folds (VF) and the ventricu-
lar folds (VeF). The vibrations of the VF interrupt the
tracheal airflow, causing turbulences, vortices and flow
instabilities in the supraglottal region, see Fig. 1.

Figure 1: 2D view of a human head (left) with detail of the
larynx (right). [2]

To investigate disorders and anomalies in human phona-
tion, studies employing a hybrid aeroacoustic simula-
tion model have been published recently [2, 3, 4]. The
simulation model consists of a finite-volume incompress-
ible computational fluid dynamics (CFD) simulation (the
CFD geometry is depicted in Fig. 2), from which aeroa-
coustic source terms are computed. In the CFD, the VF
motion is prescribed following the M5 model [5]. Succes-
sively, a computational acoustics (CA) simulation is per-
formed using the geometry depicted in Fig. 3, based on
the perturbed convective wave equation (PCWE), which
is given in [6] as

1

c2
D2ψa

Dt2
−∆ψa = − 1

ρ̄c2
Dpic

Dt
, (1)

where c is the speed of sound, ψa is the acoustic scalar
potential, ρ̄ is the mean air density, pic is the incom-
pressible pressure (the result of the CFD simulation), and
D
Dt =

∂
∂t+v ·∇ is the substantial derivative. The acoustic

pressure pa is evaluated from the acoustic scalar poten-
tial ψa with pa = ρ̄Dψa

Dt . Due to the low Mach number
of the flow, the convective part of the substantial deriva-
tive can be neglected in (1), such that the substantial

derivative collapses to a pure time derivative [7]. An
overview in form of a flow chart of the hybrid aeroacous-
tic workflow for human phonation employing the PCWE
has been published in [8, Fig. 3], and a detailed descrip-
tion is available in [3].

The goal of this work is to find cause-effect relations,
where the cause are different kinds of voice anomalies,
and the effect is given by acoustic features evaluated from
the simulated acoustic pressure signal.

Method
To find the cause-effect relation, the simulated voice
anomalies (i.e. the ’cause’) and the evaluated features
(i.e. the ’effect’) are described.

Simulation of Voice Anomalies
Three types of voice anomalies have been investigated in
various degrees. These are (i) three different subglottal
pressures, (ii) four different glottal closure types, and (iii)
two cases of VF motion symmetry.

Subglottal Pressure: The inability to build up a pressure
difference between the lungs and the mouth can be one
reason for an dysphonic voice, e.g. caused by muscle
tension disorders, as reported in [9, 10]. Subglottal pres-
sures of Psub ∈ {385, 775, 1500}Pa have been modeled by
means of a constant pressure boundary condition at the
inlet depicted in Fig. 2.

Figure 2: Geometry setup of the CFD simulations. The
subglottal pressure is modeled as a constant inlet boundary
condition. [2]

Glottal Closure (GC) Type: The vocal folds can have
varying degrees of glottal insufficiency, which occur when
the vocal folds do not close completely during each cycle.
According to [11, 12], this irregularity occurs for many
voice pathologies. As a consequence, concerned patients
report, that a higher effort is necessary for phonation
[13]. To model glottal insufficiencies, the initial glottal
opening oinitial is varied in four levels (GC1 — GC4).

DAGA 2022 Stuttgart

1258



Thereby, the following values have been used for the ini-
tial opening: oinitial ∈ {0, 40, 70, 100}%, corresponding
to the GC types GC1, GC2, GC3, and GC4, respectively
[2]. A detailed description as well as visualizations of the
different symmetry cases are available in [14, Fig. 5.5].

VF Motion Symmetry: In regular phonation, the left
and right vocal folds oscillate symmetrically. However, in
the case of laryngeal hemiparesis or unbalanced muscle
tension, the vocal folds oscillate asymmetrically [15, 16].
Therefore, the simulation model features two cases of vo-
cal fold motion symmetry, as depicted in [2, Fig. 4]. In
the symmetric case, both vocal folds have the same am-
plitude in their motion. In the asymmetric case, one
vocal fold oscillates with 50% of the amplitude of the
other vocal fold.

All possible combinations of voice anomalies are simu-
lated resulting in 24 simulation configurations. For all
configurations, the vocal tract geometry is constant re-
sembling the vowel /a/, and the fundamental frequency
of the VF vibration is 148Hz.

Acoustic Features
To quantify the effect of the simulated voice anomalies,
the acoustic pressure signal pa[n] is evaluated at the
microphone position depicted in Fig. 3, where n is the
discrete-time step number. Extracting features from au-
dio recordings is a common practice in voice science and
phonology [17, 18, 19, 20, 21, 22]. A detailed description
of the acoustic features used in the present work is avail-
able in [23]. In the following, the features are described
briefly.

NC Interface (Nitsche type)

Larynx Vocal tract

Propagation domain 

PML Inlet - ABC

Soundhard Wall

Microphone

Figure 3: Cross-section of the CA simulation geometry [24].
The acoustic pressure is evaluated at the microphone point
for computing acoustic features.

Sound Pressure Level (SPL): The subglottal pressure, as
well as other simulation parameters, is expected to have
an influence on the SPL of the acoustic signal. The SPL
Lp is computed as follows

Lp = 20 log10
p̃

20 µPa
with p̃ =

√√√√ 1

N

N∑
n=1

(p[n])
2
, (2)

where N is the total number of time steps, and p̃ denotes
the root-mean-square of the acoustic pressure signal.

Harmonics to Noise Ratio (HNR): HNR is defined as
the energy ratio between the harmonic signal component
to the noise-like signal component in dB. The splitting
of harmonic and noise-like components is performed via

the auto-correlation function rp(τ), as described in [18,
pp. 77–78]. It is computed as follows

HNRdB = 10 log10
maxτmax

τmarg
{rp(τ)}

rp(0)−maxτmax
τmarg {rp(τ)}

, (3)

where τmax is the maximum possible lag time (i.e. the
time corresponding to the highest lag index) and τmarg =
4.08ms is a lag margin.

Cepstral Peak Prominence (CPP): The CPP is computed
as defined in [25, 26, 27]. Similar to HNR, the CPP is
also a measure of harmonicity of the signal, and quantifies
how prominent and numerous harmonic components are
in a signal compared to non-harmonic components. It
is the difference between the cepstral peak and a linear
regression of the cepstrum [25, 26].

Hammarberg Index η and Alpha Ratio ρα: Hammarberg
Index η (HBI) and Alpha Ratio ρα are measures of the
energy distribution across the spectrum. The HBI η is
the ratio of the most prominent energy peak in the range
of 0 kHz–2 kHz to the most prominent energy peak in
the region 2 kHz–5 kHz. It is calculated according to [18,
p. 38], such that

η =
max

kpivot
k=1 {p̃[k]}

maxkmax

k=kpivot+1 {p̃[k]}
, (4)

where the pivot frequency bin kpivot is the highest spec-
tral bin for which f ≤ 2 kHz, and kmax is the highest
spectral bin for which f ≤ 5 kHz. The alpha ratio is sim-
ilar to the HBI described above, but instead of computing
the ratio between energy peaks, the energy sum in the
frequency bands is considered [28]. Using the frequency
bands 50Hz–1 kHz and 1 kHz–5 kHz, the alpha ratio ρα
can be computed according to [18, pp. 38–39], such that

ρα =

∑kpivot
k=kstart

p̃[k]∑kmax

k=kpivot+1 p̃[k]
, (5)

where the kstart is the lowest spectral bin for which f ≥
50Hz, kpivot is the highest spectral bin for which f ≤
1 kHz, and kmax is the highest spectral bin for which f ≤
5 kHz.

Spectral Slope: The spectral slope is a measure of energy
distribution across the spectrum. In [18], spectral slope
is defined as the result of a linear regression operation on
the whole spectrum of the pressure signal.

Low-Pass Filtering: From the acoustic pressure signals
obtained by the finite-element aeroacoustic simulation,
the features defined above are evaluated. Prior to the
feature evaluation, the signals are low-pass filtered with
a cut-off frequency of 5 kHz. This is due to the upper
frequency limit of the simulation setup [3]. Because we
are only focused on the lowest two formants, which are
below 2 kHz [29], the features which allow for a low-pass
filtering, i.e. CPP, HNR and spectral slope, are evaluated
additionally with a low-pass filter at 2 kHz. This results
in a total of 9 evaluated features, which are analyzed in
the following.
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Results
In Fig. 4, the correlations between simulation parameters
and evaluated features are visualized. Therefrom, it can
be estimated, that subglottal pressure will be correlated
mostly with SPL, ρα, and HNR. GC type is expected to
correlate mostly with η, HNR and CPP. The symmetry
property exhibits weak correlations as depicted in Fig. 4.
Furthermore, it can be seen from Fig. 4, that features
with a 2 kHz low-pass filter show stronger correlations
than the 5 kHz low-pass filtered version of the same fea-
ture.
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Figure 4: Visualization of the correlation matrix for simula-
tion parameters and evaluated features.

To investigate the correlations in detail, boxplot dia-
grams are used. In Fig. 5, we see that the evaluated
features allow to discriminate two groups of subglottal
pressures: {358Pa} on the one hand and {775, 1500}Pa
on the other hand can be discriminated with SPL, ρα
and to a certain extent also with η.
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Figure 5: Boxplot diagrams of evaluated features and sub-
glottal pressure.

In Fig. 6, we see that an increasing glottal insufficiency
leads to a decrease in CPP. Furthermore, the case GC 1
can be discriminated from the other GC types using HNR
and η.

The boxplot diagrams in Fig. 7 show, that the symmetry
property cannot be discriminated sufficiently with the
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Figure 6: Boxplot diagrams of evaluated features and GC
type.

evaluated features.
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Figure 7: Boxplot diagrams of evaluated features and sym-
metry property.

Conclusion
The presented simulation-based investigation of regular
or irregular oscillation characteristics aims to gain funda-
mental insights into the cause-effect chain of the human
voice production mechanism. In summary, the follow-
ing conclusions can be drawn: (I) Increasing glottal in-
sufficiency causes a decrease in the CPP. (II) Increasing
subglottal pressure correlates with increasing SPL and
ρα. (III) The glottal symmetry cannot be discriminated
based on the evaluated features. Future work could in-
clude a more detailed cluster analysis of the simulation
configurations and the inclusion of more acoustic features
aiming at the discrimination of the symmetry property.
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