
Automated Quality Inspection in Additive Manufacturing for Lightweight

Construction: A new Approach Based on Virtual Sonic Data and Machine Learning

(ML-S-LeAF)
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Introduction
Powder Bed Fusion (PBF) with a laser beam on metal
is a popular additive manufacturing technique that al-
lows for the creation of complex 3D shapes. The typi-
cally low weight of commonly used powders and possi-
ble load optimization when designing components make
PBF an attractive choice for lightweight design. How-
ever, the current melting and solidification processes are
prone to introduce defects, thus making quality inspec-
tion mandatory. These defects are expected to produce
a characteristic sound that can be used to identify them
as deviations from regular system noise. Thus, develop-
ing an automated process monitoring is highly desirable.
PBF should benefit from a fully automated process that
identifies and rejects defects during manufaction, which
in turn saves time and leads to a higher product quality.

We therefore propose to utilize machine learning al-
gorithms with training data obtained directly from in
situ measurements of both airborne and structure-borne
sound as well as numerically from supplementary acous-
tics simulations. In this work, we outline this project,
Machine Learning Algorithms Using Virtual Sonic Data
in Lightweight Construction for Quality Assurance in Ad-
ditive Manufacturing (ML-S-LeAF), and give the strate-
gic roadmap for developing reliable methods that are ca-
pable of recognizing deviations from common system op-
erations in the printing process due to defects and other
artifacts. The monitoring consists of three parts: First,
acoustic signals are continuously collected during print-
ing. Second, the machine learning models are applied
using both measured and supplementary virtual data.
Third, the acoustic signals are evaluated in order to asses
a possible termination of the process if necessary. In
the following sections, the measurement and simulation

setup is briefly described, the training of machine learn-
ing models is discussed, and a preview of intermediate
results from first machine learning experiments together
with an early comparison of measurement and simulation
data is given.

Measurements
Our measurement setup must meet the following criteria:
Measurement campaigns must be reproducible to give
similar results when using similar sensor types and posi-
tions within the printing chamber. In addition, a wide
variety of different sensors capable of capturing both air-
and structure-borne emissions should also be provided.
Figure 1 shows our measurement setup, which includes
two measurement microphones of type MM 302 [5] with a
frequency range of 5Hz to 100 kHz. The microphones lo-
cated approximately 25 cm to 40 cm away from the center
of the building plate. Two different types of accelerom-
eters are used: A triaxial, piezoelectric accelerometer
of type 4524-B [4] with a frequency range of 0.25Hz to
3000Hz is attached to the top of the building plate. A
more in-depth and thorough account of our data acqui-
sition process can be found in [2].

Simulations
Figure 2 shows the simulation setup for the creation of
virtual data in a two-tiered process: First, a decision
tree pertaining the most important parameters of the
3D model allows for the creation of Design of Experi-
ments (DOE) that cover many different cases with unique
combinations of environmental, critical, and minor non-
critical parameters. Each element in the decision tree
may be assigned a probability p a-priori depending on the
prevalance of the respective parameter. Second, depend-
ing on the present parameters in each DOE, Polynomial
Chaos Expansion (PCE) [3] of the system response is de-
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Figure 1: Measurement setup including two equal micro-
phones and an accelerometer for capturing airborne and
structure-borne sound, respectively.

rived. From the PCE a set of nodes and weights can be
obtained using Gaussian quadrature. The set of nodes
then serve as the actual simulation candidates [1]. In
the early project phase the focus is on simulation in the
frequency domain for structure-borne emissions in the ul-
trasonic frequency range. Once a high confidence in the
model-to-hardware correlation has been established, the
setup and simulation models can be extended.

Machine Learning Models
Induced defects during printing include balling and gaps
and could be readily identified on the optical images af-
ter the printing process. Acoustic data was labelled via
synchronisation of optical and acoustic signals that cor-
responded to identical defects. The measurement cam-
paigns allowed for the collection of a sufficient amount
of real measurement data with labelled defects that can
be used as a training set for supervised Machine Learn-
ing (ML). The final training sample consists of 192 audio
recordings of printed lines, half of which containing de-
fects.

In order to identify the signatures of defects and
their most important correlated features, the acous-
tic sensors data were analyzed using different signal-
processing methods including Short Time Fourier Trans-
form (STFT), mel, and wavelet spectrogram. Time and
frequency slice cuts on the spectrograms have also been
performed to understand which part of the printing pro-
cess and what frequencies are more relevant for the defect
identification.

Different combinations of input features and ML mod-
els including convolutional neural networks, gradient-
boosting classifiers, and random forest classifiers were ex-
plored. The test set is composed of 96 additional audio
recordings, 48 of which having defects. The results of ML
classifiers on real data are encouraging, showing an ac-
curacy above 90% in detecting defects. In a subsequent
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Figure 2: Simulation setup for creating DOE through com-
bining decision trees and PCE.

step, the real measurements will be augmented using the
synthetic data in the manner described above in order to
have a more balanced and diverse training dataset.

Figure 3 summarizes the process of training ML models
through the proposed hybrid solution of combining real
and synthetic data. A combination of real and synthetic
data will be used to train a number of different ML mod-
els in the future. Those ML models must also be tested,
adjusted, and optimised in an iterative procedure in order
to identify the best-performing model for the detection
of each specific defect type. The final goal is to achieve
a classification model that will be capable of detecting
different defects with high accuracy.

Figure 4 shows two examples of training data for our ma-
chine learning classification of printed lines based on the
acoustic signal: Spectrograms calculated through STFT
in the lower panels and the corresponding image of the
printed lines in the upper panels. Lines without defects
are shown in Figure 4 (a) and lines with enforced defects
are depicted in Figure 4 (b). Machine learning models
are trained for classification of these two types of printing
runs. Ultimately, a real time detection and classification
of various defect types are planned.
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Figure 3: Summary of training machine learning models
through the hybrid approach of using measured data together
with virtual data from acoustics simulation.

Comparing Measured and Virtual Data
Before ML models can be trained with both measured
and simulated data, the simulation results must be veri-
fied in terms of physical plausibility, accuracy, and relia-
bility for both structure-borne and airborne sound. Only
the latter case has been investigated as of writing of this
paper. For this purpose, a 3D model of the argon-filled
printing chamber has been generated with appropriate
dimensions and boundary conditions for the walls and
the powder bed.

Figure 5 shows the 3D pressure distribution in dB with
pref = 20 µPa within the chamber due to a unit exci-
tation at the position of the printed lines at 10Hz and
2 kHz using a commercial Finite Element Method (FEM)
solver. It can be clearly seen, that as the frequency in-
creases the position of the microphones will have a larger
impact. This information may be useful when optimiz-
ing the microphone placement in upcoming measurement
campaigns.

Figure 6 shows a direct comparison between measured
and simulated pressure at the microphone positions
shown in Figure 1: The comparisons have been con-
ducted for different printed lines with and without de-
fects. There is a consensus between measured and simu-
lated frequency responses, as the amplitudes of the spec-
tra generally decrease with the frequency in both cases.
However, the agreement may be improved by updating
the existing model and the approximative boundary con-
ditions. Thus, the final simulation model may not only
provide training data for various geometrically complex
objects, defects, and shifting environmental conditions,
but also data at positions different from the two micro-
phones shown in Figure 1.

Outlook
The early results in the project ML-S-LeAF are promis-
ing. The measurement and simulation results agree suf-

a)
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Figure 4: Examples of training data for machine learning
classification consisting of spectrograms computed via STFT
for printed lines (a) without defects and (b) with defects.

ficiently well. The ability to reliably detect defects from
measured audio samples marks the first milestone of
many in the project’s roadmap. In the future, additional
accelerometers for measuring structure-borne ultrasound
will be attached to the bottom of the building plate. As
in the case of airborne sound, the measured structure-
borne sound will also be compared to simulations. Addi-
tionally, the Boundary Element Method (BEM) will be
used as well in order to increase the frequency range of
the simulations to the ultrasonic spectrum. Upcoming
milestones in the near and immediate future include de-
termining and specifying the final measurement setup,
and improving as well as detailing the exact 3D models
for computer simulation. The final milestones comprise
the training of the final classification models based on
abundant real and virtual data, and the testing or exper-
imental verification of said model.
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Figure 5: Pressure distribution in dB with pref = 20µPa
within the printing chamber due to a unit excitation. (a) 3D
view at 10Hz. (b) Cross-section at 10Hz. (c) 3D view at
2 kHz. (d) Cross-section at 2 kHz.
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Figure 6: Comparison of measured data from an accelerom-
eter attached to the bottom of the building plate and virtual
data from simulation of an equivalent 3D model.
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