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Introduction
The rising trend of using voice as a means of interacting
with smart devices has sparked worries over the protecti-
on of users’ privacy and data security [1]. These concerns
have become more pressing, especially after the Euro-
pean Union’s adoption of the General Data Protection
Regulation (GDPR). The information contained in an
utterance encompasses critical personal details about the
speaker, such as their age, gender, socio-cultural origins
and more. If there is a security breach and the data is
compromised, attackers may utilise the speech data to
circumvent the speaker verification systems or imitate au-
thorised users [2]. Therefore, it is pertinent to anonymise
the speech data before being shared across devices, such
that the source speaker of the utterance cannot be tra-
ced. Voice conversion (VC) can be used to achieve speech
anonymisation, which involves altering the speaker’s cha-
racteristics while preserving the linguistic content.

Many voice conversion approaches have been proposed
over the years, where the deep learning-based methods
outperform the conventional ones [3]. Further, the ge-
nerative adversarial network (GAN) based approaches
produce natural-sounding conversions [3]. However, the
quality is dependant on the selection of the target spea-
ker. This is because GAN-based VC methods typically
use non-parallel data, which prevents the computation
of loss between the source utterance and the conversion
conditioned on a speaker other than the source. The qua-
lity of conversion degrades when the acoustic properties
between the source and target speakers are diverse. Ho-
wever, to achieve a successful anonymisation, the source
and target speakers should not have very similar acoustic
properties, such as pitch.

In this work, we propose perceptual losses which are
computed between the source and converted utterances.
The losses facilitate the model to capture representations
which are pertinent with respect to how humans perceive
speech quality. The models trained with the proposed los-
ses produce less robotic voices compared to the baseline,
and improves the overall quality for all target speakers.

Related Work
In earlier VC approaches, parallel data was utilised, whe-
re utterances of the same linguistic content are available
from both the source and target speakers. Many traditio-
nal statistical modelling-based parametric [4, 5] and non-
parametric [6, 7] parallel VC methods were proposed.
Compared to the conventional methods, the sequence-to-
sequence deep neural network (DNN) based method [8]
using parallel data produces less robotic voices. However,
it does not preserve prosody and produces mispronuncia-
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Abbildung 1: StarGAN based Voice Conversion architecture

tions [9]. Further, the model learns one-to-one mapping,
limiting its usage.

The recent works focus more on non-parallel data [3],
as it is much easier and cheaper to collect. A few VC
methods [10] use phonetic posteriorgrams (PPGs) as in-
put to the encoder-decoder framework, which produces
the translated acoustic features, consequently used by
a vocoder to generate the converted speech. The PPG-
based conversions are generally not smooth resulting in
degraded voice quality and naturalness [3]. Many non-
parallel variational auto encoder (VAE) [3, 11] methods
were proposed, which typically disentangle the content
and speaker embeddings using a reconstruction loss. The
VAE-based approaches are prone to spectrum smoothing,
which leads to a buzzy-sounding voice [3]. A plethora of
GAN-based VC approaches [12, 13, 14] have been propo-
sed to overcome this over-smoothing effect. GAN-based
VC approaches use cycle-consistency loss [15], which ena-
ble them to use non-parallel data.

Method
Our architecture is based on the GAN-based method
StarGANv2-VC [14]. We describe the architecture and
then the perceptual losses used in the work.

StarGANv2-VC
StarGANv2-VC [14] is a non-parallel many-to-many voi-
ce conversion GAN-based approach. The architecture is
shown in Figure 1. In StarGANv2-VC, only one generator
is required for conversion among many pairs. We descri-
be the pertinent components of the framework, which are
portrayed in Figure 1:
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• Generator: The generator G produces the con-
verted mel-spectrogram X using three inputs: log
mel-spectrogram generated from the source utteran-
ce Xs, fundamental frequency (F0) embeddings hf

from the source utterance and target speaker’s style-
code hs. The F0 embeddings are the convolutional
outputs from a pre-trained joint detection and classi-
fication (JDC) network [16], which has convolutional
layers followed by BLSTM units. The converted mel-
spectrogram X bears the style/timbre of the target
speaker and the linguistic content of the source.

• Speaker Style Encoder: The speaker style enco-
der S captures representations of the speaker’s sty-
le. The style may represent accent, mannerism and
other attributes which can be associated with the
speaker independent of the content spoken. Provi-
ded a mel-spectrogram Xr, which is generated from
a reference utterance different from the source mel-
spectrogram Xs and a speaker-code r, the S gene-
rates the speaker style embeddings hs. The speaker-
code is a one-hot encoding of the speaker labels. The
embedding hs acts as one of the inputs to the gene-
rator G, which contributes to the style of the conver-
ted mel-spectrogram X. S initially processes the in-
put mel-spectrogram through multiple convolutional
layers which are shared for all speakers, followed by
a speaker-specific linear layer which maps the shared
features into a speaker-specific style embedding.

• Discriminator and Speaker Classifier: The ar-
chitecture has a discriminator D, as present in any
GAN model, which performs the quality check of
the conversions by capturing the representations for
the real and fake samples. The additional adversari-
al speaker classifier (C) has the same architecture as
D. When the D is trained, keeping the weights of G
fixed, the C classifies the source speaker, which en-
courages G to produce conversions having no trace
of source speaker’s attributes. When G is trained,
the weights of D are fixed, the C classifies the target
speaker, which facilitates providing feedback to G,
such that it produces conversions sounding like the
target speaker.

Perceptual Losses
Task specific perceptual losses facilitate models to cap-
ture pertinent representations, required to achieve the
goal [17]. In our case, to improve the overall quality of
voice conversions for all target speakers.

• Short Time Objective Intelligibility (STOI):
STOI [18] is an intrusive metric that compares the
degraded signal with the high quality ground truth
to measure the intelligibility of the noisy signal. The
STOI score ranges from 0 to 1, with higher values
indicating better intelligibility. In our case, X and X̄
act as the ground truth and noisy signals respective-
ly. To calculate STOI, firstly speech signals are divi-
ded into short frames where each frame overlaps with
the adjacent frames to capture the temporal con-
text. For each frame, the short-time power spectrum

is calculated using a Fourier transform. The modu-
lation spectrum of both the signals are calculated
by applying a perceptual auditory filter-bank (one-
third octave band) to the short-time power spectra.
The correlation coefficient between the modulation
spectra of the original and degraded speech signals
are calculated, which provides a similarity measure
between two spectra. The STOI score at time frame
m is calculated by taking average over all one-third
octave bands as shown in Equation 1, where j is
the index of the one-third octave band, xj,m and
x̄j,m denote the vectors representing the short-term
temporal envelopes for time frame m and one-third
octave band j of the clean and noisy signals respec-
tively. µ(·) denotes sample mean and J is the total
number of the one-third octave bands.

fstoi(Xm, X̄m) =

J∑
j=1

(xj,m − µxj,m
)(x̄j,m − µx̄j,m

)

∥xj,m − µxj,m∥2∥x̄j,m − µx̄j,m∥2
(1)

The loss is calculated as shown in Equation 4, as do-
ne in [19], where mean squared error (Equation 3) is
also considered along with STOI score (Equation 2),
as STOI calculates the discrepancy only for frequen-
cies below 4.3 KHz. λstoi and λmse are hyperpara-
meters which weigh the contribution of Lstois and
Lstoim respectively.

Lstois = (1− fstoi(Xm, X̄m)) (2)

Lstoim = (∥XJ
m − X̄J

m∥1/J) (3)

Lstoi =
1

m
(λstoi ∗ Lstois + λmse ∗ Lstoim) (4)

• Predicted Mean Opinion Score (pMOS): MOS
is a subjective measure which is used to assess the
naturalness of the converted voice in voice conversi-
on [14]. The measure correlates well with human per-
ception of audio quality and naturalness. However,
it is arduous and expensive as many participants’ in-
volvement is needed. Therefore, a measure similar to
MOS is desirable, which captures the intrinsic natu-
ralness of the conversions. MOSNet proposed in [20]
can be used as a proxy MOS score generator. MOS-
Net is a combination of a convolutional neural net-
work (CNN) and bidirectional long short-term me-
mory (BLSTM) architecture. The CNN layers ex-
tract the representations required to assess the qua-
lity of the frames. BLSTM can effectively incorpora-
te prolonged temporal dependencies and sequential
traits into representative features. At the end two
fully-connected layers are used, which regresses the
frame-wise features into a frame-level quality score,
which is followed by a global averaging operation to
obtain the utterance-level score. The loss is calcula-
ted as shown in Equation 5, where MOS(.) denotes
MOSNet and λmos is a hyperparameter. The loss
encourages G to produce conversions having natu-
ralness similar to the original utterance.

Lmos = λmos ∗ ∥MOS(X)−MOS(X̄)∥1 (5)
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• Pitch correlation coefficient (PCC): Pitch is the
perceptual measure of F0. The pitch contour contri-
butes to the intonation or prosody of an utterance
[21]. PCC is the Pearson correlation between two
normalised F0 contours, which provides the simila-
rity between two utterances with respect to prosody
[21]. The F0 contours for two utterances having sa-
me content and intonation will vary for two groups
(age, gender, etc). However, there should not be a
large difference between the normalised F0 contours,
i.e. the change in F0 over time should not vary much.
Therefore, a higher PCC is desirable. PCC Loss is
represented in Equation 6, where Pearson(.) is the
Pearson correlation operator.

Lpcc = 1− Pearson

(
F (X)

∥F (X)∥1
,

F̄ (X)

∥F̄ (X)∥1

)
(6)

Objective Function
The generator G is trained with loss LG, where Ladv is
the typical GAN adversarial loss, Laspk is the adversarial
speaker classification loss, Lsty is the style reconstruction
loss and Lcyc is the cyclic consistency loss, as proposed
in [14]. Lp denotes one of the proposed perceptual losses.

LG = min
G,S

Ladv+λaspkLaspk+λstyLsty+λcycLcyc+λpLp

(7)
The discriminator D and classifier C are trained using
the objective function shown in Equation 8, where Lspk

is the speaker classification loss [14].

LD = min
D,C

− Ladv + λspkLspk + λpLp (8)

The λ for the corresponding loss denotes the hyperpara-
meter which weighs the loss’s contribution.

Experiment Details
We train all the models using English utterances of the
20 speakers from VCTK [22] dataset, as done in [14].
The utterances are resampled to 24 kHz and randomly
split as 80%/10%/10% (train/val/test). The models are
trained for 150 epochs and with batch size of 64. The
log-melspectrograms are derived from 2 second long ut-
terances. AdamW optimizer is used with initial learning
rate of 0.0001. The hyperparameters are set as: λspk =
0.1, λaspk = 0.5, λsty = 1, λcyc = 1, λstoi = 1, λmse = 0.1.
STOI is computed using hyperparameters same as in [18].
The naturalness of the conversions is evaluated using
pMOS. The intelligibility of the conversions is measured
using character error rate (CER), using the transcrip-
tions from Whisper [23] medium-English model. We use
automatic speaker verification (ASV) to measure speaker
similarity as done in [14]. We trained an AlexNet as do-
ne in [14] for speaker classification for the selected twenty
speakers. The classification accuracy (Speaker CLS) ser-
ves as the objective metric to assess how close the con-
versions sound to the target speaker.

Results and Discussion
We randomly selected 5 male and 5 female speakers as
the target speakers. For each source speaker, randomly

Original

Baseline

PCC

        L1                                                                         L2                L3

Abbildung 2: Change in F0 contour (blue) for the original,
conversions using baseline and PCC. The pictures are produ-
ced using Praat software, which also shows the F0 contour
and intensity contour (yellow).

50 utterances are selected, which leads to 1000 conver-
sions. The model trained using Lpcc produces the best
results with respect to naturalness and intelligibility, fol-
lowed by the model trained using pMOS loss. It is also
observed the standard deviation for the baseline is much
higher than the ones trained using target perceptual los-
ses. Therefore, the proposed losses produce better quality
conversions overall, and not just for specific target spea-
kers. With respect to speaker similarity, all the models
perform similarly, where PCC outperforms. It can also

Tabelle 1: Mean and standard deviation with objective me-
trics. Standard deviation in brackets.

Model
Objective Metrics

MOS CER Speaker
CLS

Baseline 3.20 (1.23) 8.42 (9.39) 78.7%
STOI 3.72 (0.32) 3.01 (4.50) 80.8%
pMOS 3.73 (0.23) 3.10 (3.31) 83.1%
PCC 3.80 (0.25) 2.96 (3.78) 85.8%

be seen that the models trained with perceptual losses
maintain the intonation better than the baseline, as seen
in Figure 2. Further, it can been seen that in case of
a large change in F0 contour (between L1 and L2), the
baseline fails to maintain the structure.

Conclusion
In this work we propose perceptual losses which are cal-
culated between the original and converted samples con-
ditioned on the target speaker. The losses facilitate the
model to disentangle the content and speaker represen-
tations, which leads to improved conversions not depen-
dant on the target speaker selection. In this work, we
focus only on the naturalness and intelligibility aspect of
voice quality. As future work, we will perform listening
tests to validate the results obtained through objective
measures. Further, we intend to incorporate perceptual
losses which capture the emotional content as well. This
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would be useful for the intelligent speech devices, whose
response is driven by the emotion of the end-user.
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