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Introduction 

A blues harmonica (blues harp) is a diatonic harmonica. In 

each of its channels there is a blow reed and a draw reed. 

The reeds are riveted to reed plates and can oscillate freely 

through openings in the plates (free reeds). Blowing or 

drawing with relaxed embouchure results in normal blow or 

draw notes sounding just below the natural frequency of the 

blow or draw reed. In the following, channel #4 of a C-harp 

will be considered as a representative example. In this 

channel, the normal draw note sounds a whole tone above 

the normal blow note. It is possible to bend the pitch of the 

draw note continuously down to just above the pitch of the 

normal blow note by applying suitable vocal tract geometries 

(draw bends). Similarly one can play blow notes which 

sound about a semitone higher than the normal draw note 

and can be continuously bent up (overblows). The normal 

blow note can only be bent down rudimentarily. It is 

impossible to play blow bends loud and with good sound. 

In 1979, N. H. Fletcher [1] takes up a long tradition and 

explains self-excited oscillations of wind instruments by an 

interaction between a generator (the oscillating reed in the 

mouthpiece acting as control valve) and a resonator (the air 

in the bore). A general formula for the generator admittance 

is derived and discussed. In 1987, R. B. Johnston [2] builds 

on this work by postulating a formula for the admittance of 

the overall system of the two reeds in the channel of a blues 

harp and plotting it for a set of parameters, including 

comparatively and ad hoc given „large“ values for mean 

pressures. The resonator admittance does not appear in 

detail. It is only supposed to have a positive real part because 

it mirrors energy losses in the resonator. Comparing with the 

real part of the admittance of the reeds system Johnston 

postulates intervals for possible playing frequencies in 

accordance to playing practice.  

Over the last several decades, the above-mentioned model 

for self-excited oscillations has been extended in various 

directions and also made more precise. In this paper a 

stringent linear stability analysis will be performed, where a 

mean playing pressure together with the corresponding 

playing frequency appear as a pair of solutions of a complex 

equation, relating the admittances of generator and resonator 

[3][4]. The resonator admittance is obtained from a toy 

model built from impedance measurements during 

saxophone playing. 

The goal of this paper is to present a nontrivial test case. 

Starting with an overblow (for example on channel #4 of a C 

harp) and then changing from blowing to drawing as quickly 

as possible (without changing the geometry of the vocal 

tract), a comparatively deep draw bend will sound. Will the 

model be able to predict self-excited oscillations with 

frequencies a whole tone apart based on a common resonator 

frequency? 

 

The air flow through a blues harmonica 

 

 

 

Figure 1: 1-point oscillators modeling the reeds: blow note.  

Top: blow reed. Bottom: draw reed. The displacement  h  

corresponds to the displacement of the reed tip relative to 

the reedplate, gaph  is the displacement (gap) at rest, 0h is 

the mean displacement. 

 

 

 

 
Figure 2: 1-point oscillators modeling the reeds: draw note. 

Reeds and definition of h , gaph  and 0h  as in Fig. 1. 

 

The airflow from a fictitious boundary between instrument 

and vocal tract through the instrument into the environment 

(for blow notes) or vice versa (for draw notes) is modeled by 

a 1-dimensional volume flow. The reeds can be represented 

as 1-point oscillators, using effective sizes for the parameters 
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[5]. A stationary Bernoulli equation is supposed to hold on 

the trajectory through the gaps between the reeds and the 

reedplates. Using a non-stationary Bernoulli equation as in 

[1][2] complicates matters unnecessarily from today's point 

of view. On the other hand, it is now common to consider in 

addition the volume flow generated by the moving reeds. 

Pressure inside the reed channel is supposed to be 

homogeneous. Pressure fluctuations in the surroundings (the 

emitted sound) are neglected. The pressure at the boundary 

to the vocal tract thus acts as pressure difference on the reed 

surfaces. 

The volume flow  jQ  at reed j  (with 1j  for the blow 

reed and 2j  for the draw reed) is approximately equal to: 

     jjj
j

jjjj hSvWhhvhQ   1,,           (1)    

The displacement jh  of the 1-point oscillator (see Figs. 1 

and 2, the indices are omitted in the figures) models the 

displacement of the reed tip. jWh  stands for the cross-

sectional area, and both this area and the "width" W  are 

effective quantities (which explains the factor 2  in Table 1). 

The factor   j
1  compensates the negative sign of jh  for 

the blow reed (see Figs. 1 and 2). With effective reed surface 

S , jhS   quantifies the volume flow caused by reed motion. 

The axis for the volume flow points into the instrument for 

blow as well as for draw notes, due to the fact that an input 

admittance will be calculated. The total volume flow Q  is 

the sum of the volume flows jQ  passing the two reeds. 

In the following, it is assumed that at the boundary between 

vocal tract and instrument, "small" sinusoidal pressure 

fluctuations with (circular) frequency   around a mean 

value are given. These fluctuations cause oscillations of both 

reeds with common frequency   around a mean 

displacement. A linear approximation of the Bernoulli 

equation as well as a subsequent linear approximation of (1) 

provide a corresponding approximation for the volume flows 

jQ  and thus also for their sum Q . The quotient pQ  /  of 

volume flow fluctuation Q  and pressure fluctuation p  is 

the differential admittance  ,0pYh  of the system made up 

by both reeds in the channel of the harmonica. In complex 

notation one obtains: 
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The abbreviation   /2 0pWA  was used as well as: 

    20

222

0 jjj qD                                    

(4) 

The index j  distinguishes between blow and draw reeds, the 

plus sign in   stands for blow notes, the minus sign for 

draw notes. For the reed j , gapjh ,  denotes the reed gap, jm  

the effective mass, 0j  the natural (circular) frequency, and 

jq  the damping constant. My own measurements [9] for 

channel #4 of a C-harp result in values listed in table 1: 

Table 1: Parameters for the reeds system 

 blow reed draw reed 

S  25101,1 m  25101,1 m  

0j  13300 s  13700 s  

jq  004,0  004,0  

W  m002,02   m002,02   

gapjh ,  m3102,0   m3102,0   

m  kg6109,3   kg6101,3   

 

Admittance of the resonator 

A major role for the generation of bends and overbends is 

played by a constriction between the back of the tongue and 

the palate, as is the case when whistling or speaking vowels 

[i], [y], or [u]. Therefore, it seems obvious to attribute the 

role of the resonator to the vocal tract. Although there are by 

now MRI images of the vocal tract during bending [6], 

measurements or calculations of the admittance of the vocal 

tract do not exist to my knowledge. 

In contrast, measurements of vocal tract admittance do exist 

for bending and altissimo playing on clarinet and tenor 

saxophone [7]. According to my subjective experience, 

vocal tract geometries for bending on the harmonica can be 

used for bending on the saxophone (and vice versa).  

This gave rise to the idea of fitting the impedance curves 

measured in [7] for a bend note and for a note in the 

altissimo range on the saxophone by a 1-mode resonator in 

order to get a "toy model" of the vocal tract. The curves were 

each shifted to a resonant frequency of 
1

0 3500  s . For 

the values given in Table 2, the maximum impedance maxZ  

was taken from [6], the quality factor q  was determined by 

fitting another impedance value, and finally the modal factor 

max0ZqF   was calculated. 

Table 2: Parameters for the resonator 

 Bending Altissimo 

maxZ  37 /107,1 msPa   37 /104,3 msPa   

q  32,0  10,0  

F  310 /109,1 mPa  310 /102,1 mPa  
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Using complex notation, the admittance  resY  of a 1-mode 

resonator as a function of playing frequency   is: 
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Graphical stability analysis 

Linear stability analysis in the sense of [3][4] is based on the 

idea that both volume flow and pressure are continuous at 

the boundary between instrument and vocal tract. 

Consequently, the differential input admittance of the reed 

system and the input admittance of the vocal tract are equal 

save for a minus sign: 

   resh YY             (6) 

Solutions of equation (6) are of the form  ,0p , where 0p  

is an average blow or draw pressure for which self-excited 

oscillations with playing frequency   are possible.  

Solution strategy in Figs. 3 and 4 was to use a family of 

functions hY  depending on a parameter 0p  and then solve 

equation (7): 

        resh YpY 0                   (7) 

For this purpose, the corresponding real and imaginary parts 

from (2), (3) and (4) are plotted using the values from Tables 

1 and 2. Equations (7) and (6) are solved with solution 

 ,0p  if and only if the curves of the two real and the two 

imaginary parts (with parameter 0p  for the reeds admittance) 

intersect at the same location (frequency)  .  

Fig. 3 shows the evaluation for a draw note on channel #4 of 

a C harp with values from Table 2 for a bend on the 

saxophone. The imaginary part of hY  is nearly invariant 

under changes of 0p  (plotted are exemplary curves for the 

parameter values Pa30 , Pa67 , and Pa100  ). Thus the 

solution  ,0p  can easily be found by varying 0p  . Self-

excited oscillations are possible for a draw pressure of 

Pap 670   and a playing frequency of 13485  s  which 

lies slightly below the assumed resonant frequency 
13500  s  of the vocal tract. 

 

 

Figure 3: Draw bend on channel #4 of a C-harp. 

Horizontal: (angular) frequencies in 
1s . Marked are the 

frequencies 
13300 s  for the blow reed and 

13700 s  for the 

draw reed. The solid vertical line indicates the playing 

frequency 13485  s , the dashed line the resonator 

frequency 
1

0 3500  s . Vertical: admittances in 

sPam /3 . Red resp. green: real part of hY  resp. of resY . 

Blue resp. yellow: imaginary part of hY  resp. of resY .  

Solid curves: Self-excited oscillations are possible for  

Pap 670  . No solutions of the equation system “red = 

green” and “blue = yellow” exist for  Pap 1000    

(dotted curves) or for  Pap 300    (dashed). Parameters 

for the reeds system as in Table 1, parameters for the 

resonator as for bending on the saxophone in Table 2. 

The requirement that phase angles of  hY  and of  resY  

should be equal [2] proves to be an unsuitable criterion in 

the context of a linear stability analysis. For Pap 1000   

and 
13487  s  these phase angles would be equal, but not 

the real parts and consequently not the complex admittances 

(cf. Fig. 3 ). 

As mentioned in the introduction, one can switch between 

draw bend and overblow by quickly changing the direction 

of breathing while the vocal tract is kept fixed. In doing so, 

the overblow sounds a marginal semitone above the normal 

draw bend. Using the values from Table 2 for a bend on the 

saxophone, the solution of for a blow note would be the pair 

 14180,1200 sPa . The note would sound more than two 

semitones above the normal draw note, and the blowing 

pressure would also be unrealistically high. Playing 

overblows imposes high demands on the geometry of the 

vocal tract, perhaps comparable to playing the saxophone in 

the altissimo range. Using corresponding values from Table 

2 (second column) hardly changes the results for a draw 

bend found in Fig. 3. However, the overblow corresponding 

to the solution  14046,390 sPa  in Fig. 4 now sounds only 

one and a half semitones above the draw note, and the 

blowing pressure is also much more realistic. 

 

 

 
Figure 4: Overblow and blow bend on channel #4 of a C-

harp. Axes and colors as well as parameters for the reed 

system as in Fig. 3, parameters for the resonator as for the 

altissimo playing on the saxophone in Table 2. For 

Pap 3900   an overblow sounds with 14046  s . With 

Pap 3550   a blow bend with 13032  s  would be just 

as conceivable. 
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As indicated by the dotted vertical line in Fig. 4, not only an 

overblow, but also a blow bend could sound at 

approximately the same blowing pressure. In practice, low 

volume blow bends are indeed possible, often sounding 

together with an overblow. With higher volume one can only 

play overblows in a decent way. This might be an example 

that linear stability analysis can predict instabilities, but not 

the possibly resulting nonlinear stable region. 

Review and outlook 

The real part of the resonator admittance (5) is positive, 

which correlates with the energy losses in the resonator. 

Therefore, self-excited oscillations are only possible if the 

real part of the reed admittance is negative. Thus, plots like 

Figs. 3 and 4 confirm the restriction of possible playing 

frequencies already described by Johnston [2], which is 

apparently robust with respect to particular model 

assumptions or to the parameters used. 

In contrast to [2], this paper was primarily concerned with 

quantitative statements. For a "typical" channel of a blues 

harp, possible playing frequencies were given together with 

the blowing or drawing pressures required for them within 

the framework and validity range of a linear stability 

analysis. 

The model was able to represent alternating playing of draw 

bends and overblows with equal vocal tract geometry. It 

turns out that the draw bend sounds practically at the 

resonant frequency of the vocal tract, while the overblow is 

about a whole tone above it. This might explain why playing 

an overblow is subjectively more difficult. If the brain is 

used to associating a certain vocal tract geometry with a 

certain pitch of a draw bend, imagined and actual pitch no 

longer match when playing the corresponding overblow. 

Considering all this, of course, one must not forget that 

measurements were applied for playing on the saxophone. 

And, of course, it would be desirable to know the vocal tract 

admittance when playing on the blues harmonica. 

Finally, one should ask whether linear stability analysis in 

frequency range can explain the occurrence of self-excited 

oscillations on the blues harmonica at all. The model tacitly 

assumes sinusoidal motions of both reeds with common 

frequencies. Measurements [9] show instead rather irregular 

and independent movements of the two reeds at the very 

beginning, followed by a rapid exponential growth of 

sinusoidal oscillations into the saturation range. Thereby the 

reeds „agree“ very quickly on common pseudo frequencies 

resp. frequencies, but common frequencies are not given a 

priori. These observations motivate investigations in time 

domain. 

L. Millot [5][10] deals with modeling and numerical 

simulations of free reeds instruments in time domain. An 

alternative approach with emphasis on the emergence of 

collective behavior of the system as a whole might be some 

ansatz similar to the Impulse Pattern Formulation IPF [11]. 

 

 

Literature 

[1] Fletcher, N. H.: Excitation mechanisms in woodwind 

and brass instruments. Acta Acustica united with 

Acustica 43.1 (1979), 63-72 

[2] Johnston, R. B.: Pitch control in harmonica playing. 

Acoustics Australia, 15(3) (1987), 69-75 

[3] Rienstra, S. W., Hirschberg, A.: An instroduction to 

acoustics. Technische Universiteit Eindhoven (2004) 

[4] Chaigne, A., Kergormard, J.: Acoustics of musical 

instruments. Springer New York (2016) 

[5]  Millot, L.: Etude des instabilités des valves : application 

à l’harmonica diatonique. Diss. Paris 6 (1999) 

[6] Egbert, P., Shin, K., Barrett, D., Rossing, T., Holbrook, 

A.: Real-time magnetic resoncance imaging of the 

upper airways during harmonica pitch bends. Proc. of 

Meetings on Acoustics ICA2013, Vol. 19, No. 1 (2013) 

[7] Chen, J., Smith, J., Wolfe, J.: How players use their 

vocal tracts in advanced clarinet and saxophone 

performance. Proc. Int. Symp. Music Acoustics (2010) 

[8] Free software Geogebra, URL: 

https://www.geogebra.org/ 

[9] Förtsch, A.: URL: 

https://www.researchgate.net/profile/ 

Alfred_Foertsch2 

[10] Millot, L., URL: 

https://www.researchgate.net/profile/ 

Laurent-Millot-2 

[11] Linke, S., Bader, R., Mores, R.: The Impulse Pattern 

Formulation (IPF) as a nonlinear model of musical 

instruments. Proc. of the international symposium on 

music acoustics 2019 (2019) 

DAGA 2023 Hamburg

1357


