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Abstract
The Energy Boundary Element Method (EBEM) aims at the solution of acoustic high frequency problems,
where the classic BEM becomes inefficient due to the large number of degrees of freedom (DOF) required. A
transition to non-phased energetic state variables removes the correlation between the investigated frequency
range and the element size. In the EBEM the number of DOF is thus determined primarily by the complexity of
the geometry. In order to speed up the computation and to handle structures of very high geometric complexity,
a fast multipole algorithm for the EBEM is investigated. It has a great potential to reduce the numerical effort
in the Boundary Element Method (BEM). Helmholtz and Laplace problems have been solved very efficiently
applying this algorithm. However, the kernels used in the EBEM require an adaptation of the algorithm. In this
paper the development of a fast multipole formulation of the EBEM is presented.
Keywords: Fast multipole, Boundary elements, Energy method

1 INTRODUCTION
Nowadays, the BEM can be considered a well-established solution technique for acoustic problems of many
kinds. The number of a models DOF N required for satisfactory solution accuracy, however, does not only
depend on the complexity of the geometry, but also on the investigated frequency range. A commonly used
rule of thumb suggests at least 6-10 elements per wave length. Since the matrices of the system of equations in
the BEM are generally fully populated and non-symmetric, the memory required for the storage and solution, as
well as the solution time, grow very fast with the maximum frequency under consideration. Thus, the BEM is
mostly limited to the low and medium frequency ranges. The numerical effort for the conventional BEM grows
proportionally with O

(
N2
)
. The application of the Fast Multipole Method (FMM) allows the reduction of the

complexity to O (N) respectively O (N logN) [1]. Although this improvement means a tremendous acceleration
and considerably extends the frequency range where BEM is applicable, the FMM accelerated BEM (FMBEM)
still fails to cover the entire audible frequency range in most practical problems.
The EBEM constitutes a different approach to deal with the particular challenges of high frequency problems
[2, 3, 4, 5]. By neglecting interferences between propagative waves and using energetic quantities for the
description of the sound field, similarly to the statistical energy analysis (SEA), the correlation between the
investigated frequency and the element size is removed. To satisfy the underlying assumptions, the calculations
have to be carried out within a broader frequency range that contains several eigenfrequencies. The method is
thus only applicable for higher frequencies, where the modal overlap is high and yields a frequency-smoothed
response. Unlike in the SEA, the results obtained by the EBEM give detailed insight in the local spatial
distribution of the variables describing the sound field.
This paper aims at the formulation of a FMM for the EBEM (FMEBEM) to speed up the computation and
allow for finer discretiziation, where it is required by high geometric complexity of the model. The approach,
first presented in [6], is discussed in more detail. Section 2 gives an outline of general FMM procedures. In
section 3 the application to the EBEM is shown followed by numerical experiments to verify the accuracy and
performance of the FMEBEM presented in section 4. The paper closes with a summary and an outlook in
section 5.
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2 FUNDAMENTALS OF FMM ACCELERATED BOUNDARY ELEMENT METHODS
The following section is based on references [1, 7, 8] which may be consulted for more in depth information.
The boundary integral equations occurring in the BEM are of the form

f (x) =
∫

Γ

K(x,y)φ(y)dy x ∈ Γ, (1)

where x and y denote the position of receiver and source point, respectively. The function f is known on the
boundary Γ of the computational domain, φ is an unknown function and K (x,y) is a given kernel function. The
underlying idea of the FMBEM is to avoid the costly evaluation of all the direct interactions between separate
elements when evaluating the kernel function. Instead, several neighboring source elements are clustered and
their influence on sufficiently far situated receiver elements is evaluated by some suitable approximation resulting
in a "post office scenario" as illustrated in Figure 1.

(a) (b)

Figure 1. Direct evaluation of interactions (a) and evaluation in a single stage FMM (b) according to [7]

2.1 Definitions
The mathematical basis for the FMM is given by a factorization of the kernel function of the form

K(x,y) =
∞

∑
n=0

k(1)n (x−y0)k
(2)
n (y−y0). (2)

In Equation 2, y0 denotes an arbitrary point in the R3. The functions k(1)n are usually singular in the origin,
whereas k(2)n are usually entire functions [1]. The separation of receiver and source in Equation 2 principally
allows the desired clustering after truncation of the infinite series. The expansion, however, is usually valid
under a certain condition only, the most common being

‖x−y0‖> ‖y−y0‖ . (3)

To ensure this condition, a hierarchical tree structure is introduced. In 3D, a so called oct-tree is used. To
obtain the tree, a cubic bounding box is defined, so that it contains the entire boundary surface. This bounding
box is said to be on level 0 and contains all the elements of the model. Boxes at higher levels l > 0 are created
by splitting the parent box on level l−1 into eight equally sized children. The division is repeated until either
a desired level or a limiting number of elements per box is reached. A childless box on the deepest level is
called leaf. Furthermore the following definitions are introduced: Two boxes are said to be near neighbors if
they are on the same level and share at least one boundary point. A box is within the interaction list of another
box of the same level if their parents are near neighbors but the boxes themselves are not.
Boxes that are not near neighbors are well separated, meaning that Equation 3 is satisfied for all points of the
receiving box when y0 is chosen as the center point of the box containing the source point. Thus, it becomes
obvious that a tree structure in the FMM must always consist of at least three levels, since on level 0 and
1 there are no well separated boxes. At level 2 on the other hand, all well separated boxes are within the
interaction list of a box and their influence can be taken into account by evaluation of Equation 2. If the depth
of the tree exceeds level 2, the method at hand is called Multi Level Fast Multipole Method (MLFMM).
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Using Equation 1 and Equation 2 a multipole expansion for Γ0, the part of Γ contained within the box, and a
point x outside the box is obtained as∫

Γ0

K(x,y)φ(y)dy =
∞

∑
n=0

k(1)n (x−y0)Mn(y0), (4)

where the multipole moment centered at y0 is defined by

Mn(y0) =
∫

Γ0

k(2)n (y−y0)φ(y)dy. (5)

In a similar manner, a local expansion is defined for a point x inside a box as∫
Γ0

K(x,y)φ(y)dy =
∞

∑
n=0

Ln(x0)k
(3)
n (x−x0), (6)

where Ln(x0) denotes the local coefficients centered at x0 and the functions k(3)n are chosen to be a complete
set of interior solutions of the governing partial differential equation. For obvious reasons, the summations in
Equation 4 and 6 have to be truncated after a finite number of terms in practical implementations.
To complete the tool set for the MLFMM, three operators are required: An operator to shift the center of
a multipole expansion from a box to its parent, called M2M, an operator to translate a multipole expansion
centered at a box to a local expansion centered at another box in its interaction list, which is called M2L and
an operator to shift the center of a local expansion from a box to its child, called L2L.

2.2 Algorithm
The FMM can be employed for the approximation of a matrix-vector product and as such in combination with
an iterative solver for the solution of a boundary value problem by means of the BEM. The major steps of
the procedure are as follows. First, the boundary is discretized and a trial vector is determined as usual. The
elements are organized in a tree structured as described in subsection 2.1. Starting at the deepest level, the
multipole moments for all leaf boxes are calculated using Equation 5. The multipole moments are then shifted
to the respective parent boxes using M2M, summing up the contributions of all the children of a parent. This
procedure is repeated following the hierarchy of the tree upwards until all boxes on level 2 posses a multipole
moment. Once this step is completed, the multipole moments on each level are translated to local coefficients
of the interaction list using M2L and summed up for each box. Now, starting from level 2, tracing the tree
downwards, the local coefficients of each parent box are shifted to its children using L2L and are added to
their existing coefficients. Once again, this step is repeated until all leaf boxes posses a local expansion that
accounts for the influence of all well separated boxes. This expansion is then evaluated using Equation 6. The
contributions of all source points within the same box and near neighbor boxes are evaluated directly and are
added to the result from the local expansion.

3 APPLICATION OF THE FMM TO THE EBEM
The boundary integral equation used in the EBEM is [3, 5]∫

Γ

H(x,y) ·nxσ(y)dy+ c(x)σ(x) = In(x). (7)

In Equation 7, nx denotes the outward normal vector at the receiving point, σ the source strength on the
boundary, c(x) the boundary factors and In(x) the sound intensity in normal direction. The kernel function is
given by

H(x,y) =
e−µr

4π

r
r3 , (8)
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where r = x−y, r = ‖x−y‖ and µ is the attenuation coefficient. The strong singularity occurring in Equation 8
may be handled by a suitable numerical integration scheme [9]. In case of constant elements these singularities
are avoided. To apply the FMM to Equation 7 an expansion in the form of Equation 2 for Equation 8 is
required. In its general form, no obvious factorization of the kernel function seems to be available. Since the
kernel is not oscillatory and smooth outside the singularity, the application of a so called kernel-independent or
black box FMM [11] would be feasible, where the factorization does not need to be explicitly known. For the
special case µ = 0, however, which is a valid assumption for many practical problems, an analytical formulation
as described in section 2 can be found. This analytical FMM for the undamped case will be described in the
following. As µ = 0, the following identity is observed

H(x,y) ·nx =
r ·nx

4πr3 ≡−
∂G(x,y)

∂nx
. (9)

where G(x,y) = 1
4πr denotes the Green’s function of Laplace’s equation. Thus, the scalar product H(x,y) ·nx is

taken as the negative normal derivative of the Laplace kernel function at the receiver point. With this approach,
a FMM based on the factorization of G(x,y), known as [10]

G(x,y) =
1

4π

∞

∑
n=0

n

∑
m=−n

S̄m
n (x−y0)Rm

n (y−y0), (10)

is possible. In Equation 10 the symbol ·̄ indicates the complex conjugate. The functions Rm
n and Sm

n are known
as regular and singular solid harmonics. They are defined in terms of the polar coordinates r,φ ,θ of a vector x
as

Rm
n (x) =

1
(n+m)!

Pm
n (cosθ)eimφ rn (11)

and

Sm
n (x) =

1
(n−m)!

Pm
n (cosθ)eimφ 1

rn+1 , (12)

where Pm
n is the associated Legendre function of degree n and order m. Here, the definition of Pm

n from [10] is
used, where the factor (−1)m, known as Condon-Shortley phase, is omitted from the definition. By comparing
Equation 10 to Equation 2 it becomes obvious that k(1)l (x−y0) = S̄m(l)

n(l) (x−y0) and k(2)l (y−y0) = Rm(l)
n(l) (y−y0)

have been chosen, where the original summation index n has been replaced with l to avoid confusion with
associated Legendre functions degree n.
The normal derivative appearing in Equation 9 depends on the receiver position only. Due to the separation of
source and receiver, its computation requires a modification of the last step of the FMM algorithm only, which
is the evaluation of at the receiver position by Equation 6. Using

k(3)l (x−x0) =
∂Rm(l)

n(l) (x−x0)

∂nx
, (13)

Equation 6 can be rewritten as∫
Γ0

H(x,y) ·nxσ(y)dy =− 1
4π

∞

∑
n=0

n

∑
m=−n

Lm
n (x0)

∂Rm
n (x−x0)

∂nx
. (14)

Taking the discretization into account, the multipole moment of the leaf boxes may be calculated from the
elements i inside the box with their shape functions Ni as

Mm
n (y0) = ∑

i∈Box

∫
Γi

Rm
n (y−y0)Ni(y)σ(y)dy. (15)
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The operators M2M, M2L and L2L can be adopted from the FMM for the Laplace equation. These are [10]

Mm
n (y

′
0) =

n

∑
n′=0

n′

∑
m′=−n′

Rm′
n′ (y0−y′0)M

m−m′
n−n′ (y0), (16)

Lm
n (x0) =

∞

∑
n′=0

n′

∑
m′=−n′

(−1)nS̄m+m′
n+n′ (x0−y0)Mm′

n′ (y0), (17)

Lm
n (x1) =

∞

∑
n′=n

n′

∑
m′=−n′

Rm′−m
n′−n (x1−x0)Lm′

n′ (x0). (18)

Where Equation 16 represents M2M, M2L is given by Equation 17 and Equation 18 defines L2L. For the
evaluation of Equation 14 the derivatives of Rm

n need to be calculated. They are given by [10]

∂

∂x
Rm

n =
1
2
(
Rm−1

n−1 −Rm+1
n−1
)
, (19)

∂

∂y
Rm

n =
i
2
(
Rm−1

n−1 +Rm+1
n−1
)
, (20)

∂

∂ z
Rm

n =Rm
n−1. (21)

As has been mentioned before, the expansion is truncated, thus the outer sum is terminated after p terms,
resulting in a total p2 coefficients for the local and multipole expansion of each box. The number of terms p
is refered to as expansion length.

4 RESULTS
The previously described FMEBEM was implemented within the framework of a C++ library for acoustic
boundary element analyses. The method was implemented as a MLFMM, where the number of levels nl is
chosen according to [12] by

nl ≈ log8 (N) . (22)

4.1 Sphere
For a first verification and to perform some numerical experiments concerning the performance and accuracy of
the method, the geometry of a sphere is analyzed. Boundary conditions for the normal intensity are chosen such
that they correspond to a point source in the center of the sphere. The sphere is modeled using 9,359 elements
and constant shape functions. In Figure 2, the resulting source strengths on the boundary are shown as computed
by the direct evaluation of the boundary integral equation (Figure 2a) and the FMEBEM (Figure 2b-2e).

(a) direct EBEM (b) FMEBEM, p = 3 (c) FMEBEM, p = 4 (d) FMEBEM, p = 5 (e) FMEBEM, p = 6

Figure 2. Source strength on the boundary computed by direct evaluation of Equation 7 (a) and FMM with
varying expansions lengths (b-e)
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Using the expansion length p = 3, there are clearly visible artifacts in the solution, showing deviations from the
direct solution within the order of magnitude of roughly 10%. With increasing expansion length, however, these
deviations decline and for p = 6 the results of the FMEBEM match those of direct computation very well. The
operators M2M, M2L and L2L that have been implemented are of the complexity O

(
p4
)
, hence the expansion

length can have great impact on the computation times and thus the efficiency of the FMM. To analyze the
effect of the expansion length on accuracy and speed of the method in more detail, the mean relative error was
calculated as

ε =

√
∑N (σdirect (ri)−σFMM (ri))

2√
∑N σ2

direct (ri)
. (23)

In Equation 23, σdirect (ri) denotes the source strength at collocation point i as computed by the direct EBEM
and σFMM the source strength as a result of the FMM. The resulting error as well as the required computation
times are shown in Figure 3. The behavior of the error for large p is unexpected. From theory, a monotonously
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Figure 3. Computing time and relative error of the FMEBEM over the expansion length

decreasing error, that eventually converges towards zero would be expected. However, the error in Figure 3
converges towards a finite value. The reason for this behavior is suspected to be related to inaccurate handling
of very large numerical values occurring during the computation of the factorials in Equation 11 and 12 for
large p. Since the overall accuracy is still good and the effect only occurs for impractically large expansion
lengths, it was not yet further investigated.
To analyze the performance of the method for varying problem sizes, the sphere was discretized with ap-
proximately 1,000 elements. This base mesh was refined several times by splitting the element edges until a
maximum of approximately one million elements was reached. Figure 4 shows the computing time and required
memory for different numbers of DOF for both, direct EBEM and FMEBEM, using a constant expansion length
of p = 5.
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Figure 4. Computing time and memory consumption during solution for EBEM and FMEBEM for different
problem sizes
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It can be observed that the EBEM does scale approximately with the complexity O
(
N2
)

while the FMEBEM
behaves as O (N). The reduced effort allows for faster solution and larger problem sizes due to reduced memory
consumption.

4.2 Car interior
Finally, a somewhat more complex model has been analyzed to demonstrate the applicability to more realistic
engineering problems. The mesh shown in Figure 5 was used to model a generic car interior excited by a
loudspeaker system. It consists of approximately 40,000 constant elements. The blue circular area in the front
has a unit intensity defined as boundary condition, modeling a uniformly vibrating speaker membrane. For the
green area at the bottom a high absorption coefficient of α f loor = 0.7 is defined. The remaining yellow elements
have a low absorption of α = 0.05 prescribed. While there are severe simplifications in comparison to an actual
car interior, the complexity of the model is high compared to the sphere since different types of boundary
conditions and a more complex geometry are involved. Solutions computed by EBEM (6a) and FMEBEM
using p = 5 (6b) are shown in Figure 6. The results match very well, though the relative error computed on the

Figure 5. Model of a generic car interior

(a) EBEM solution (b) FMEBEM solution

(c) error on the boundary (d) error inside the domain after post processing

Figure 6. Comparison of solutions for the car model obtained by EBEM and FMEBEM
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boundary (6c) becomes quite large in some areas. However, the areas, where the largest relative error occurs,
are those, where the EBEM solution approaches zero so even very small absolute errors result in large relative
errors. The evaluation of the field variables after post processing the results (6d) shows excellent agreement.

5 SUMMARY AND OUTLOOK
A fast multipole method for the undamped EBEM kernel function has been developed and analyzed. The
method has been verified by results of a direct EBEM and shows very high accuracy. The required memory
during the solution is reduced significantly and speed is vastly increased compared to the direct evaluation.
More efficient operators of complexity O

(
p3
)

are known for the Laplace kernel [1, 10, 12]. They offer the
potential to improve the current implementation. The application of a black box FMM for the damped and
undamped EBEM kernel [11] may also be of interest.
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