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ABSTRACT 
Perception relies on inferences about the causal structure of the world provided by multiple sensory inputs. 

In ecological settings, multisensory events that cohere in time and space contribute to such inferential 
processes: the sound of flapping wings naturally paces the crowded vision of a flock of birds, and hearing 
while seeing a speaker enhances speech comprehension. Psychophysical and magnetoencephalography 
(MEG) studies suggest that the Human brain may synthesize multisensory temporal comodulation in some 
abstract form, which may benefit (as top-down predictions) the feedforward analysis of incoming sensory 
signals. For instance, recent findings have shown the emergence of large-scale phase synchronizations in 
high gamma (60-120 Hz) and beta (15-30 Hz) bands following the short experiencing of temporally 
comodulated multisensory signals. The coordinated engagement of prefrontal, parietal, and visual cortices 
suggests the possibility that a short experience of temporally comodulated stimuli signaling the same distal 
information may functionally re-route unisensory processing. 
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1. INTRODUCTION 
Textbook descriptions of perception have classically addressed the senses in isolation, each 

concerned with the transduction, coding, and analysis of different kinds of physical signals. 
Increasingly however, empirical evidence from different fields of research have demonstrated that 
multisensory integration – i.e. the combination of multiple sensory signals – is the rule rather than the 
exception (1-3). Indeed, a few seconds of life are filled with a multitude of sensory inputs. Some 
sensory events pertain to the same perceptual episode such as the smell, the sight, the sound, and the 
anticipated taste of wine being poured in a glass; others, although constitutive of the same experienced 
scene, pertain to different experiential episodes such as the chattering crowd gathered around the 
waiter, each with dyads entertaining distinct conversations. How then does the brain selectively 
integrate and segregate multisensory information into a coherent, meaningful and intelligible story? 

1.1 Causal Inference in Multisensory Perception 
Since the seminal Fuzzy Logical Model of Perception (4-6) and the more recent Bayesian 

approaches of multisensory integration in behavior and in neurosciences (e.g. 7-10), the resolution of 
perceptual inference problems has been formulated as a weighted function of multisensory reliability 
so that the most reliable information outweighs other sensory inputs . This model entails the existence 
of multisensory priors shaped in the course of perceptual experiences (as posteriors). Hence, recent 
working hypotheses posit that the brain can infer the causal structure of the sensory environment by 
integrating multisensory signals originating from the same physical source and by segregating signals 
originating from different causes (11-15). Audiovisual speech perception was conceived as a case 
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study for Bayesian inference (6) which likely follows similar Bayesian computational principles (16) 
mediated by predictive multisensory neural processes (17-20). Yet, what sensory cues are primordial 
in engaging multisensory integration is unclear, and whether multisensory integration is a default 
operating mode or not is likely determined by selective attention mechanisms. 

1.2 Selective Attention 
The role of (selective) attention is omnipresent in multisensory research (21). While 

neuroanatomical connectivity demonstrates that feedforward integration could occur early at different 
stages of the sensory hierarchy, the automaticity of behavioral integration effects is systematically put 
into question.  

For instance, in a seminal study (22), behavioral evidence for early feature-based multisensory 
integration could not be found: using a visual search paradigm in which visual feature changes were 
temporally coherent or co-modulated with acoustic changes, the authors found no evidence of parallel 
search and concluded that audiovisual (AV) integration was mediated by attentional effects. To the 
contrary, Van der Burg and colleagues (23-24) used a conjunction visual search in which a horizontal 
or vertical bar (visual target) surrounded by distracters of various orientations changed colors (green, 
red) at a rate of 1 Hz. They showed that transient sounds synchronized with the visual target changes 
fastened participants’ reaction times. As temporal coincidence was orthogonal to the feature space 
relevant for the task (here, the orientation of the visual bar) and yet, perceptual facilitation effects were 
observed, the authors suggested that the synchrony between the transient sounds and the visual 
changes was critical. This finding suggested that the feature of interest may have been the locus of 
temporal attention as cued by the sound.  

A follow-up study by an independent group tested whether behavioral facilitation in visual 
conjunction search would show temporal selectivity in the predicted range of neurophysiological  
reports. Neurophysiological evidence had suggested that selective attention may be implemented as 
the slow regulation of neuronal activity (25-27) in the delta band (1-2 Hz) across auditory and visual 
sensory modalities. More recent neurophysiological evidence further supports a selective 
enhancement of sensory information processing in multisensory populations as well as sensory 
cortices (28), and this can be observed for speech content as well (29-30).  

The paradigm of Van der Burg and colleagues (23) was extended by measuring reaction times (RT) 
and performance at varying rates of AV presentation as well as insuring that no temporal correlation 
survived between the sound and the visual target in a control condition (31). Below 2 Hz, faster RTs 
and improved performances were observed for temporally congruent AV stimuli, whereas slower and 
worse performances were observed for temporally incongruent AV stimuli as compared to the visual 
condition alone. These results provided evidence that AV interactions in visual search were 
temporally-dependent and that automaticity in multisensory integration was mediated by selective 
temporal attention. In a similar vein, Parise and colleagues (32) presented a train of white noise clicks 
and Gaussian blobs at different spatial locations. The authors showed that spatial localization was 
more precise when AV stimuli were temporally correlated than when they were not; however, 
temporally uncorrelated AV stimuli were still more precise than the best unisensory condition. As 
mentioned by the authors, even when stimuli were “uncorrelated”, they still presented some 
correlations at larger temporal scales which likely accounted for the lack of replication of the 
differences observed between correlated and uncorrelated effects reported in the  previous study (31).  

Altogether, these psychophysical studies suggest that the temporal comodulation of sensory inputs 
is a crucial cue for engaging selective attention in multisensory integration by increasing the salience 
in time of incoming sensory inputs. A recent model (15) relying on temporal coincidence further 
suggested that temporal coherence may be sufficient to determine very early on in the sensory 
hierarchy whether signals are causally related or temporal ly segregated.  

1.3 Audiovisual Comodulation 
The comodulation or temporal coherence of multisensory sources could be seen as a 

‘common-fate’ Gestalt principle so that features sharing the same dynamics in different sensory 
modalities are inferred to belong to the same perceptual object (32), just as can be observed within 
vision (33-35) and within audition (36, 37). The temporal comodulation of sensory signals helps 
building the representation of complex perceptual scenes and in the context of multisensory 
integration, may enable a feedforward volley of multisensory cueing. This is particularly relevant for 
speech processing in which the acoustic envelope of the speech signal and the movements of the lips 
show high temporal correlation or comodulation (38) in the spectral range that is relevant for speech 
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feature categorization i.e. the F2/F3 formants region (39,40). These correlations have been argued to 
support multisensory integration even when visual speech information is consciously suppressed (41). 
Hence, an interlocutor's mouth movements temporally coherent with the envelope of the acoustic 
speech signals provide the listener with strong binding cues for predictive inferences  (17, 18, 38, 42, 
43). These general considerations motivated a research program which explored whether AV 
comodulation may also subsequently help visual perceptual discrimination (44, 45). We report below 
a partial set of results from one study, which will be presented at the conference.  

 

2. MATERIALS & METHODS 

2.1 Participants 
36 healthy human participants (16 females) were recruited for the study (22.1 +/- 2 y.o). All 

participants were right-handed, had normal hearing and normal or corrected-to-normal vision. Before 
the experiment, all participants provided a written informed consent in accordance with the 
Declaration of Helsinki (2008) and the local Ethics Committee on Human Research at NeuroSpin 
(Gif-sur-Yvette, France). Prior to the MEG acquisition, participants were randomly split into 3 
experimental groups (V, AV, and CTRL) as detailed below. 

2.2 Task 
The behavioral task consisted in discriminating which of a red or green cloud of dots moved in the 

most coherent way (Figure 1). While being recorded with magnetoencephalography (MEG), 
participants were tested with the visual task for 12 minutes before and after a short training (PRE, 
POST, respectively). The training was 20 minutes long (4 blocks, 5 minutes each) using visual stimuli 
only (V group; N=12), congruent or incongruent audiovisual stimuli (AV and CTRL group, 
respectively; each with N=12). In PRE and POST, individuals’ visual discrimination thresholds were 
drawn from their individual psychophysical discrimination curve testing 7 strengths of motion 
coherence (15%, 25%, 35%, 45%, 55%, 75% and 95%; 28 trials each).  Each MEG recording block was 
followed by a 5 minutes rest block.  

2.3 Stimuli 
Visual stimuli were isoluminant green and red clouds of dots (Figure 1A). Dots (0.2° radius) were 

presented within an annulus of 4° to 15° of visual angle. The motion flow was 16.7 dots/deg 2/s with a 
speed of 10°/s. The direction of motion was constrained to 45°-90° around the azimuth. Both colors 
(red, green) and directions (up, down) of the most coherent cloud were counterbalanced and 
pseudo-randomized across trials. The V group underwent training using visual only stimuli. The CTRL 
group underwent training with acoustic noise fully uncorrelated with the coherent motion to test 
specificity of AV associations. The AV group was tested with temporally comodulated AV associations  
(Figure 1B). We used parametrized acoustic textures (46) so that each visual dot was paired with a 
linear frequency-modulated acoustic sweep whose slope depended on the direction of the visual dot 
(see 44; Fig. 1A; fs = 44.1 kHz, 0.2 - 5 kHz). The maximal slope was 16 octaves/s corresponding to 
motion directions of 82.9°-90°. A visual dot moving upwards (downwards) was associated with an 
upward (downward) acoustic ramp. The duration of a ramp was identical to the life -time of a dot.  

2.4 Magnetoencephalography (MEG) 
Electromagnetic brain activity was recorded in a magnetically shielded room using a 306 MEG 

system (Neuromag Elekta LTD, Helsinki). MEG signals were sampled at 2 kHz and band-pass filtered 
between 0.03-600 Hz. Four head position coils (HPI) measured the head position of participants before 
each block; three fiducial markers (nasion and pre-auricular points) were used during digitization as a 
reference for coregistration of anatomical MRI (aMRI) immediately following MEG acquisition. 
Electrooculograms (EOG) and electrocardiogram (ECG) were recorded simultaneously with MEG. 
Five minutes of empty room recordings was acquired before each block for the computation of the 
noise covariance matrix. 
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Figure 1 – A: In a single trial of the main experimental task used for all participants (V, AV and CTRL 
groups in the PRE and POST experimental blocks), a red and a green cloud of dots were intermixed. 
All dots were fully incoherent for up to 0.6 s. Then, one of the clouds (here, red) became more coherent 
for 1 s. Participants were asked to report the color of the most coherent cloud. B: During training, the 

AV group heard a coherent acoustic texture paired with the most coherent cloud (here, red). C: 
Illustration of the source-estimated Human motion area (hMT+; left panel) activity in response to the 
presentation of visual motion coherence of increasing strength (blue to red color). The stronger the 
coherence of visual motion, the stronger the source amplitude estimated with MEG (right panel). 

Samples of the video trials are provide as Movies S1 and S2 in Zilber et al (44). 
 

 

2.5 Main Analyses 
The analysis of the MEG used the MNE-python toolbox (47). After applying an anti-aliasing FIR 

filter (low-pass cutoff frequency at 130 Hz), MEG data were down-sampled to 400 Hz, and 
preprocessed to remove external and internal interferences. Signal Space Separation (SSS) was 
applied with MaxFilter to remove exogenous artifacts and noisy sensors  (48). Ocular and cardiac 
artifacts (eye blinks and heart beats) were removed using Independent Component Analysis (ICA) on 
raw signals (49; 
https://github.com/mne-tools/mne-python/blob/master/tutorials/plot_artifacts_correction_ica.py). 
The functional interaction between brain regions was assessed by evaluating the similarity of brain 
activity across remote brain regions, namely functional connectivity (FC) of oscillatory activity using 
the weighted Phase Lag Index (PLI) (50, 51). All statistics were corrected for multiple comparisons.   
 

3. MAIN RESULTS 
 
All participants improved their performance during training (Figure 2, left column). Performing 

the visual discrimination task was accompanied by the activation of a large network of brain regions 
encompassing sensory and multisensory cortices (44). Of interest, we found a selective implication of 
prefrontal regions for those motion coherence strengths that improved after training (Figure 2, middle 
column). Herein, we solely focused on the PRE and the POST functional networks, when participants 
from all three groups performed the task on visual motion coherence only in the absence of any other 
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stimuli. 28 cortical regions were considered following source reconstruction. All statistical contrasts 
were based on non-parametric permutation t-tests. Only phase coupling values showing significant 
differences (p < 0.01) are being highlighted.  

 

3.1 Alpha (8-12 Hz) Networks (De)Synchronization 
The functional connectivity pattern observed in resting-state was subtracted from the PRE and 

POST networks. A significant uncoupling of the alpha oscillatory network during both PRE and POST 
was found as compared to resting-state. The observed alpha desynchronization was modulated by the 
training (i.e. the sensory history) experienced by participants. Consistent with the alpha 
desynchronization, a general task-related decrease of node degree from resting-state to PRE was found 
in parietal, occipital, and temporal regions for the alpha network. Additionally, a relative increase in 
synchronization from PRE to POST was observed mainly in the V and CTRL groups (Figure 2). 

 

 
 

Figure 2 – Perceptual Discrimination (left column): all three groups (V, AV and CTRL) significantly 
improved their performance (significant decrease of perceptual threshold) after the short training. An 
increased activity in ventro-lateral Prefrontal Cortices (vLPFC) was found in response to visual 

motion coherence stimuli, which became discriminable after training (44; middle column). This 
observation suggested that the temporal comodulation of sensory signals may be represented in an 

abstract (sensory-independent) format. Post-training oscillatory networks showed the notable 
emergence of beta and high-gamma oscillatory activity in the AV group (45; left column). 

 

3.2 Beta (14-30 Hz) and High Gamma (> 60 Hz) Networks  
A similar analysis performed for the beta and gamma oscillatory regimes showed an increase of 

large-scale coupling from resting-state to task (both PRE and POST; Figure 2, right column). The 
beta network was found in all groups and implicated vlPFC, Intra-Parietal Sulcus (IPS) and hMT+. A 
significant strengthening of the beta network following training was solely observed in the AV group, 
who had experienced AV comodulated signals. A significant increase of functional connectivity in 
high gamma was also found in the AV group between auditory regions and pSTS. Further, the node 
degree value of beta oscillatory networks decreased with training in all three experimental groups. 
Conversely, the right mSTS region increased following training in all three groups. This observation 
suggested the implication of the mSTS during training, the synchronization of which got stronger and 
more extensive following all trainings. 
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3.3 Beta (14-30 Hz) network and perceptual decision-making 
The functional network patterns emerged in a training-selective manner in the beta band for the AV 

group, suggesting that comodulated AV stimuli affected the functional organization of cortical 
interactions during visual discrimination task. Both beta and gamma long-range interactions in 
POST-specific networks were found to predict an individual’s confidence rating trained with AV 
comodulation (r=0.72, p=0.011, N=12; 45).  

 

4. DISCUSSION  
A series of psychophysical work and recent MEG data (44, 45) suggest that comodulated 

audiovisual stimuli are crucial for multisensory perception. Comodulated sounds while performing a 
motion coherence discrimination task seem to strengthen subsequent perceptual decision-making 
through the regulation of large-scale oscillatory synchronizations in the Human brain. A functional 
connectivity analysis quantifying the degree of oscillatory phase-coupling across brain regions 
showed a global decrease of alpha (8-12 Hz) phase synchronization from to rest to task. This global 
decrease was indicative of an enhanced attentional state when performing the task. Importantly, we 
observed the selective emergence of the long-range beta (15-30Hz) and gamma (60-120 Hz) 
synchronization networks in the AV group, that is the group having experienced coherent multisensory 
stimulation. Altogether, our results suggest that temporal comodulation is an important ecological cue 
for solving the seminal correspondence problem in multisensory research.  

5. CONCLUSIONS 
In sum, this body of work aims at exploring the interplay of bottom-up (temporal comodulation) 

and top-down (abstraction) selectivity in the integration and segregation of multisensory information 
during perception. 
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