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ABSTRACT
Subject to the lack of detailed environmental information, the classical matched-field processing (MFP) may 
not be adapted to the accurate localization of underwater acoustic sources. In this paper, a framework that 
applies deep learning techniques instead of the MFP method is presented for the localization
(direction-finding) of ship acoustic sources in a shallow water environment. The original data is recorded 
from a 128-element vertical array placed in a shallow water. The acquired array data is first processed by the 
time-domain conventional beamformer (CBF) in order to obtain the beamformed waveform signals 
corresponding to each direction-of-arrival (DOA) with a resolution of 1 degree. In the meantime, the GPS 
and recognized DOA information in the diagram of the target ships are employed to generate the labels for 
these beamformed signals. Base on the labeled data, a framework is proposed to predict the DOA information
of target ships in a deep learning (DL) manner using the pre-trained state-of-the-art convolutional neural 
networks. Driven directly by the array signal data, the proposed method offers a way for the ship localization 
to overcome the environmental mismatch problem, which is believed to be better than that of conventional 
MFP method and some other shallow machine learning methods.
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1. INTRODUCTION
Passive sonar acoustic signal processing methods are an established technique to remote detect, 

localize and monitor marine vessels and their activities. Though a series of related methods have been 
developed during the past several decades, poor performance on sound-source localization still 
persists in a complex marine environment, especially when multi-sources exist in the scenario and the 
signal-to-noise-ratio (SNR) is low. In practical applications, the acoustic characteristics of a shallow 
water environment are varying in both space and time with high levels of background noise, 
interferences and multipath effects. The performance of the conventional methods like TDOA 
estimation (1), cepstral analysis (2) and autocorrelation analysis (3) in these scenarios significantly 
degrades and cannot effectively detect or localize targets.

Apart from these classical methods, recently data-driven machine learning or deep learning 
methods become more and more popular for the acoustic source localization, such as range and depth 
discrimination simulation (4) and seafloor classification (5). The machine learning method is shown 
to perform significantly better than the conventional matched field processing in ship range 
estimation in the Santa Barbara Channel Experiment with limited environmental information (6).
After achieving state-of-the-art results for image recognition (7), convolutional neural networks 
(CNNs) become very popular as an automated feature extractor and classifier (8, 9), which combines 
hierarchical feature extraction and classification at the same time. The CNNs are also applied for the 
joint detection and ranging of marine vessels (10), which is shown to be able to detect the presence 
and estimate the range of transiting vessels at greater distances than the conventional method.

In this paper, we aim to develop a scalable system based on the well-developed deep-learning
neural networks to predict the DOA information of ships in a shallow water environment using the 
multi-element hydrophone array data. The main contributions of our work can be summarized as: 1) In 
order to make full use of raw array signal data, an array data processing approach is proposed to 
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generate the labeled dataset, by which the deep learning method can be implemented. 2) It is explored
to integrate the well-developed CNN architectures such as ResNext (11) into the framework for more
effective feature extraction and prediction. 3) The pre-trained weights of CNN model on a large 
open-source dataset are employed to enhance the system performance by a transfer learning and 
fine-tuning strategy. The performance of proposed system is finally validated by using the real data 
acquired in a shallow water experiment.

The rest of this paper is organized as follows. Section 2 presents details of the proposed system in 
the study. In Section 3, the dataset and experimental setup are first respectively introduced. 
Experimental results are then reported and discussed. Finally, Section 4 concludes the paper. 

2. METHODOLOGY

2.1 Array Data Processing
The training of deep learning neural networks requires a large number of sample data to reach a 

convergence. Thus, it is important to first process and convert the raw hydrophone array data into a 
usable labeled dataset before applying the deep learning techniques. As shown in Figure 1, the 
processing steps can be listed as follows:

1) Time-domain conventional beamforming. The recorded multi-channel array data is
beamformed in the time domain by means of the CBF approach to obtain the waveform signals 
at each DOA direction with a resolution of 1 degree.

2) Acquisition of GPS and DOA information of target ships. The ship GPS data can be read to 
provide ground-truth direction-finding information while the DOA information can also be
manually recognized in the DOA diagram based on CBF.

3) Audio tagging. On the basis of the GPS and DOA information, the beamformed array signals 
can be labeled to generate a complete dataset for deep learning applications.

Figure 1 – The diagram of processing array data

2.2 Localization Based on Pre trained Neural Networks
Based on the generated dataset, a deep neural network architecture is employed to predict the 

DOAs of target ships. Apart from directly using the raw waveforms as input, the most common 
choice in audio signal processing is the 2D time-frequency representation, for example, log mel-filter 
bank features (log-mel), which is achieved based on short-time Fourier transform and usually scaled 
by a log-like frequency. The log-mel features are considered to be the best time-frequency feature 
representations for audio signals to be used for deep-learning methods (12, 13), In this study, log-mel
features are first obtained from the waveform data and then applied as the input data fed into the neural 
networks.

As shown in Figure 2, the log-mel features (by 128 filters) and the corresponding delta and 
delta-delta features are calculated at the same time in order to produce a 3-channel image-type input 
for deep neural networks. A random selection strategy is also used to stochastically capture a 
fixed-length segment in time axis from the 3-channel feature maps to generate the equal-length inputs. 

The prediction task is implemented by using a state-of-the-art CNN architecture i.e. ResNext101 
(14). Due to the fact that low-level semantic features are constant for different tasks like image 
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recognition and audio tagging, it is more efficient to employ the deep CNN models with pre-trained 
weights on a large-scale image dataset (e.g. ‘ImageNet’ (7)) to do the audio tagging in a transfer 
learning manner (15, 16). Fine-tuning the pre-trained weights of CNN model on the generated array 
signal dataset will generally allow for a faster training and smaller prediction errors (16).

The ResNext architecture is an extension of the deep residual network where the standard residual 
block is replaced by a ‘split-transform-merge’ one (14). As shown in Figure 2, the prediction result is 
finally achieved after a modified fully-connected layer (FC) and a Softmax layer.

Figure 2 – Illustration of the proposed architecture

3. EXPERIMENT

3.1 Data of the Shallow Water Experiment
The experimental data used in this study comes from a shore hydrophone array test in a shallow sea 

area. The array is a line fiber-optic hydrophone array having a total of 128 array elements with an array 
element spacing of 6.25 m and a sampling frequency of 20 kHz. The experiment depth is about 95 m.
There are several ships transiting in the area and the GPS information of some ships are also recorded. 
A subset of the array recording data is selected to be used in this study. 

Figure 3 – The GPS route of Ship1
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Figure 4 – Evolution of DOA based on the CBF

As shown in Figure 3, a ship target travels from a 3.69 km distance to a 6.39 km distance from the 
array according to the GPS data during this period. Base on the DOA diagram shown in Figure 4, the 
routes of 5 ship targets are recognized manually, which provide the ground-truth label information for 
the beamformed data. According to the aforementioned data processing steps, the raw array data are 
transformed into a labeled dataset. As shown in Table 1, the distribution of the beamformed array data 
with different labels is illustrated where each wav file has a same time length of about 1.63 s. 

The labeled dataset is divided into the development and evaluation datasets where the development 
and evaluation datasets respectively consist of 50% (the first half and the other half) of the total 
number of samples. A 4-fold cross-validation setup is used on the development dataset. The averaged
prediction accuracy across the four folds on the evaluation dataset is reported for performance analysis.
The accuracy metric used is defined as the number of correctly predicted audio recordings divided by 
the total number of recordings.

Table 1 – List of recordings of beamformed array signals

Label

Number of development

samples (5-fold cross 

validation)

Number of 

evaluation 

samples

Total number 

of samples

Sampling 

rate

Ship1 1123 1123 2246 20k Hz

Ship2 1198 1197 2395 20k Hz

Ship3 2805 2805 5610 20k Hz

Ship4 1173 1172 2345 20k Hz

Ship5 588 588 1176 20k Hz

Ship4 Ship5 25 25 50 20k Hz

Ship1 Ship5 152 152 304 20k Hz

Ship2 Ship4 78 77 155 20k Hz

None 38505 38505 77010 20k Hz
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3.2 Experimental Setup
The production of the log-mel, delta and delta-delta feature maps are obtained by Librosa toolbox 

in Python and stored in the hard disk in forms of pickle files. As shown in Figure 5, an example of the 
3-channel input feature maps for ResNext model is presented. The training process is carried out based 
on a 4-fold cross-validation setup on the development dataset and the performance is then tested on the 
evaluation dataset. Since the class imbalance problem is really significant for the dataset, a simple data 
balancing technique is developed just in terms of ensuring at least one sample to be selected for each 
class in a training batch.

Different configurations of the proposed architecture and related parameters are tested in this work
according to the heuristic experience. The adaptive moment estimation (ADAM) algorithm is 
employed to optimize the cross-entropy loss objective function. The learning rate is set as multi-steps, 
where 0.001 is set for the first 50 epochs and multiplied by 0.1 for every next 20 epochs. A batch size 
of 32 is applied based on the hardware capacity. The models are implemented by PyTorch using GPU 
acceleration on a hardware resource consisting of Xeon E5 2683V3 CPU and 2 GTX 1080Ti GPU 
cards driven by CUDA with cuDNN (17).

Figure 5 – An example of the 3-channel input (logmel) for DL model, the 3 channels are respectively logmel, 

delta feature of logmel and delta-delta feature of logmel

3.3 Results and Discussion
As shown in Table 2, after completing the model training process, class-wise validation accuracies 

are averaged over all the four cross-validation folds. The class-wise evaluation accuracies are also 
obtained on the evaluation dataset. It is shown that the evaluation accuracies are a little lower than the 
counterpart validation accuracies, which indicates the generalization capability of the proposed 
method is relatively good. It is worth noting that the training dataset has a significant class imbalance 
problem, where the number of samples in the largest class is about 100 times of the number of the 
smallest class. Since a class balancing technique has been utilized in the training, the model produces
relatively small difference on the accuracy for different classes.

Table 2 – Results of the class-wise accuracies

Class Validation Evaluation

Ship1 95.3% 87.2%

Ship2 96.7% 87.7%

Ship3 97.5% 92.0%

Ship4 86.1% 72.5%

Ship5 79.0% 70.0%

Ship4 Ship5 68.0% 56.0%

Ship1 Ship5 78.9% 75.6%

Ship2 Ship4 70.5% 64.9%

None 92.9% 91.8%

Averaged 85.0% 77.5%
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Due to the fact that the target ships actually travel far away from the array in the test, the SNR of the 
samples in the evaluation dataset are generally lower than that in the training dataset. Thus the 
averaged accuracies of the proposed system can still be considered as good. In the future study, the 
improvements can be carried out to more efficiently solve the class imbalance problem and further 
increase the model generalization capability. Moreover, the achievement of ground-truth DOA labels 
can be refined to eliminate the possible errors coming from array configuration and other factors.

4. CONCLUSION
Despite deep learning techniques have shown to be very effective than other methods in a variety of 

research fields, they still have not been widely explored in the domain of underwater passive ship 
localization. In this work, we have investigated the use of a scalable deep learning system integrated 
with the well-developed CNN architectures to predict the DOA information of target ships. A list of the 
array data processing steps is proposed to make the full use of the large-scale array recordings for 
training deep neural networks. The developed system shows a great potential on the problem solution 
of the ship acoustic localization in a complex marine environment. In future work, the proposed 
system will be carefully improved and widely tested based on different underwater acoustic scenarios. 
In addition, some efforts will be made to give an analysis of the physical meanings of what have been 
learned and extracted by the deep learning neural networks in order to obtain an appropriate 
interpretation.
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