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Abstract

First-order ordinary differential equations (ODEs) based time-domain FEM (TD-FEM) is an attractive time-
domain solver for room acoustics simulation. For an idealized case the TD-FEM has fourth-order accuracy in
both space and time with explicit algorithm. This paper presents a sound absorber modeling in the first-order
ODE:s based TD-FEM, addressing permeable membrane (PM) absorbers, which have been used to create com-
fortable acoustic environments in buildings such as conference rooms, stadiums and swimming pools. However,
simple implementation of numerical PM absorber model to the TD-FEM engenders fully implicit algorithm. To
overcome the difficulty, an iterative solver for sparse linear systems is locally applied to the TD-FEM. As a
consequence, locally implicit first-order ODEs based TD-FEM for sound field analyses including PM absorbers
is presented. Numerical experiments including acoustics simulation in a real sized room showed that the pre-
sented locally implicit TD-FEM performs better than the fully implicit implementation without the reduction of
accuracy.
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1 INTRODUCTION

Wave-based acoustics simulation methods in the time domain, which discretize the wave equation numerically
in both space and time, are one of tools for room acoustics design. Recently developed efficient time domain
wave-based methods can simulate sound propagation in rooms with simple boundary conditions at frequencies
up to several kilohertz. Among various time domain methods, the time domain finite element method (TD-
FEM) has an inherent strength in dealing with complex-shaped room model [, 2, 3]. In standard formulation,
TD-FEM shows an implicit algorithm. Therefore, the authors have been presented an efficient implicit time
marching scheme using dispersion-reduced low-order finite elements, stability relaxed time integration method
and iterative solvers for large-scale room acoustics simulation and it has fourth-order accuracy in both space
and time for an idealized condition [2, 3]. Also, as an alternative formulation, the authors are exploring an
accurate explicit formulation, which is based on first-order ordinary differential equations (ODEs) [4, 5, 6]. The
present paper deals with the latter first-order ODEs based TD-FEM.

Time domain sound absorbers modeling, which can consider both frequency and incident angle dependence of
absorption characteristics, is one of the primary concerns to increase the accuracy and applicability of time
domain methods for room acoustics simulation. Various absorbers such as porous absorbers and Helmholtz res-
onator have been used to control acoustics inside buildings. Among them permeable membrane (PM) absorbers,
which are air-permeable thin fabrics, are an attractive absorber with its superior material properties, and have
been applied successfully to various architectural spaces like conference rooms, and swimming pools. Acoustic
curtains, suspended acoustic ceilings and space sound absorbers exemplify PM absorbers. The present paper
specifically addresses how to incorporate PM absorbers into the first-order ODEs based TD-FEM efficiently.

In an earlier work [0], we have been presented that the direct implementation of numerical PM model into the
first-order ODEs based TD-FEM engenders a fully implicit time marching scheme because the matrix expressing
the contribution of permeable membrane cannot be diagonalized. Although the resulting linear system of equa-
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tions can be solved efficiently by using an iterative solver, the scheme loses the advantage of explicit algorithm.
Therefore, the present paper proposes a locally-implicit time marching scheme to alleviate the difficulty. The
locally-implicit scheme is realized by local application of linear equation solver to linear system of equations,
which have small unknown, associated with permeable membranes. In doing so, the most part of time marching
scheme can be explicit. In the remainder of present paper, the formulation of first-order ODEs based TD-FEM
for room acoustics simulation including PM sound absorbers is presented firstly. Secondly, the locally-implicit
time marching scheme is proposed. Then, the validity and performance of the present scheme are examined
through two numerical examples including acoustics simulation inside practical sized meeting room with PM
ceiling absorbers.

2 THEORY

2.1 First-order ODEs based TD-FEM

We consider a closed sound field Q¢ surrounded with a boundary I', which is governed by the nonhomogeneous

wave equation expressed by
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where p, cg, po and g represent, respectively, the sound pressure, the speed of sound, the air density and the
added fluid mass per unit volume. V represents the gradient of a variable. The weak from of nonhomogeneous

wave equation is expressed by
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Here, ¢r denotes the arbitrary weight function. Introducing Galerkin finite element method to the sound pres-
sure and weight function in the weak form, with three boundary conditions, i.e., a rigid boundary, a vibrating
boundary and an impedance boundary, gives the following semi-discrete second-order ODE as

Mj + cfKp + coCp = f, 3)

where M, K and C respectively denote the global mass matrix, the global stiffness matrix, and the global
dissipation matrix. p and f respectively denote the sound pressure vector, the external force vector. The symbols
- and -- signify first- and second-order time derivatives. For the explicit calculation of Eq. (3), a diagonal mass
matrix D lumped from M and a vector v = p are introduced. Consequently, Eq. (3) is transformed into

Dp = My, 4)
Dv = f— c3Kp — coCp. (5)

In temporal direction, p in Eq. (4) and v in Eq. (5) are respectively discretized using first-order accurate forward
difference and backward difference. The resulting time marching scheme is expressed as follow [5].

pn — Pn71 _‘_Athlenfl’ (6)
(D4 ArcoC)v" = DV + Ar(f" — cKp"). (7)
Here, n and At respectively represent the time step and the time interval. Note that Eq. (7) is solvable explicitly

with a lumped dissipation matrix C. Furthermore, the first-order ODEs based TD-FEM achieves fourth-order
accuracy in both space and time using MIR for an idealized condition [4, 5].

2.2 Time-domain FE modeling of PM absorber

In this study, a limp membrane with the surface density M and the flow resistance R is assumed. Figure 1
shows FE model of PM, where Qcf, I'em, I'ema and I'enp respectively represent the air element, the PM
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Figure 1. FE model of PM.
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Figure 2. The algorithm of locally-implicit time marching scheme for acoustics simulation including PM sound
absorbers.

element and the boundary surfaces of both sides of PM. The sound pressure of two sides of PM is represented
by pa and py. vf and vy, are the particle velocity near and inside PM, and the vibration velocity of PM. The
equation of motion for limp PM is given by

My = pa— po, ®)

The air permeability of PM is expressed by the flow resistance, which is defined as

R— Pa— Db . ©)
Vf —Vm
Using Egs (8), (9), a PM can be modeled by imposing the following vibration boundary conditions on both
boundary surfaces I'e ma and I'e mp-
9 _ .
ap _ POVf on I'e Ma (10)
on Pove on Fe,Mb~
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Table 1. Three types of PMs (PM A, PM B and PM C) with the different surface density M and the flow
resistance R.

Type | M, kg/m? R, Pa s/m’
A 0.065 196
B 0.120 462
C 0.495 1087

Source

PM

L e

0.1

Unit, m x /01

Figure 3. An analyzed impedance tube model with a single-leaf PM absorber.

By considering the above vibration boundary condition, the second equation in the time marching scheme of
first-order ODEs based TD-FEM (Eq. (7)) is rewritten as

c
D + Arco(C + %S)]v" —Dv'! A — B(K+ %S)p"]. an
Here, the global matrix S denotes the contribution of PM. Because S cannot be lumped, it engenders non-
diagonal components to the coefficient matrix. Therefore, Eq. (11) becomes implicit and must be solved at each
time step using linear equation solvers. The CG solver with diagonal scaling preconditioning is used for the
solution. The convergence tolerance is set to 1079,

3 LOCALLY-IMPLICIT SCHEME

When addressing PM sound absorbers, the first-order ODEs based TD-FEM becomes an implicit method as
presented in 2.2. However, the coefficient matrix of Eq. (11) has non-diagonal components only in the rows
corresponding to nodes on surfaces of PM. Therefore, the linear equations of Eq. (11) can be solved by local
application of iterative methods to PM part. Then, air domains are calculated using Eq. (7), explicitly. Figure 2
shows the algorithm of locally-implicit time marching scheme.

Regarding the reduction of computational costs by locally-implicit scheme, a total number of sparse matrix-
vector products (Nsmvp), which is the main operation of TD-FEM, for fully implicit scheme is defined by

Nsmvp, full = Nstep X 2 + Niger, (12)

where Ngep and Ny, respectively represent the total number of time steps and the total number of iterations.
Here, the fully implicit scheme means that Eq. (11) is used in both PM part and air domains. The first term of
Eq. (12) means Nsyvp for Mv in Eq. (6) and (K+ %S)p in Eq. (11). The second term expresses Nsyvp for



Table 2. Calculation conditions of two meshes

Mesh h, m At, s TDOF
1 0.005 1/131000 0.014
2 0.05 1/10400  0.143
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Figure 4. Comparisons of waveforms for PM C between the fully implicit scheme and locally-implicit scheme
in the case with (a) Mesh 1 and (b) Mesh 2

iterative operations in CG method. On the other hand, Nsyyp of the locally-implicit scheme is expressed as

NSMVP,local = Nstep X 2+ rpoF X Nier, (13)
with N
PM
'DOF = ——- (14)
Nan

Here, Npv and Naj denote a number of nodes on the PM and all nodes, respectively. In Eq. (13), Nsmvp
for Mv of Eq. (6) and Kp of Eq. (7) are represented as the first term. The second term means that Ngyyp
for iterative operations in CG method can be reduced to rpor times that of the fully implicit scheme. The
locally-implicit scheme can reduce Nspyp significantly, because Npy is generally much lower than Naj.

4 NUMERICAL EXPERIMENTS

The validity and numerical efficiency of the locally-implicit scheme were investigated using an impedance tube
model and a real sized meeting room model [0]. As listed in Table 1, three types of PMs, each with different
M and R, were used in the two models. The most classical single-leaf PM absorber consisting of PM and
rigid-backed air cavity was considered. To verify the proposed scheme, waveforms calculated using the fully
implicit scheme and locally-implicit scheme were compared. Moreover, the efficiency was evaluated using the
following measure rNSMVP-

Nsmvp,local

. (15)
Nsmvp, full

I'NSMVP =
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Table 3. rnsmvp for PM A~C in the cases using Mesh 1 and Mesh 2.

|PMA PMB PMC
Mesh 1 [ 41.0 427 416

Mesh 2 | 35.8 37.5 41.1

0 8.55
\ X
S R
(1.0,1.01.2)  (1.0,1.0,1.2)
3.55
z=1.2
v y Unit, m

Figure 5. A plane at 1.2 m height of the meeting room on which a source point S and receiving point R are
located.

4.1 Impedance tube model

Figure 3 shows an impedance tube model with a single-leaf PM absorber of 0.2 m air cavity depth. A source
was located on the tube inlet. A receiving point was placed at 0.05 m in front of PM. A modulated Gaussian
pulse with the upper limit frequency of 1500 Hz was used as a sound source. As for boundary conditions, the
tube inlet is absorbing boundary with the characteristic impedance of air and other boundaries are treated as
rigid walls. Waveforms up to 0.1 s were calculated using two FE meshes (Mesh 1 and Mesh 2) with different
spatial resolution. Table 2 lists the mesh size h, At and rpor for Mesh 1 and Mesh 2.

Figure 4 shows comparisons of waveforms for PM C between fully implicit and locally-implicit schemes in the
cases using Mesh 1 and Mesh 2. In both meshes, the waveforms between both schemes agree well each other.
Similar results were obtained in other cases. Table 3 shows rnsmyps for the cases using Mesh 1 and Mesh 2.
Using the locally-implicit scheme reduces Nsyyp to 35.8 ~ 42.7% of those in the fully implicit scheme.

4.2 Meeting room model

Rectangular meeting room (8.55 m in length, 3.55 m in width, and 3.0 m height) with PM ceiling absorber
was analyzed as a demonstration of practical case. A single-leaf PM absorber with air cavity of 0.1 m was
installed on the ceiling. A point source S and a receiver R were located on a plane of 1.2 m height, as shown
in Fig. 5. 1/3 octave band-limited impulse responses were calculated at 500 Hz and 1 kHz with a source signal
of impulse response of IIR filter. Regarding boundary conditions, a real-valued equivalent impedance z. = 126.3
was given to the walls and the floor. The impedance value corresponds to a statistical absorption coefficient
0.059. The FE mesh used here is created to satisfy a spatial resolution of 6.1 elements per wavelength at the
upper-limit frequency of 1 kHz 1/3 octave band. In the analysis, rpor equals to 0.031, which can expect the
significant benefit of locally-implicit scheme. Impulse responses were calculated up to 2.0 s with Az = 1/10400
S.
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Figure 6. Comparisons of waveforms between the fully implicit scheme and locally implicit scheme at (a) 500
Hz and (b) 1 kHz in the case using PM C.

Table 4. rnsmvp for PM A~C at 500 Hz and 1000 Hz.

|PMA PMB PMC
215 256 325
210 249 312

500 Hz
1000 Hz

Figure 6 shows comparisons of waveforms in the case using PM C between both schemes up to 0.03 s, includ-
ing reflections from the ceiling absorber. The waveforms calculated using the locally-implicit scheme agree well
with those using the fully implicit scheme. As shown in Table 4, the locally-implicit scheme is 3.08 ~ 4.76
times faster than the fully implicit scheme, which indicates clearly the effectiveness of locally-implicit scheme.

CONCLUSION

The presented paper proposed the locally-implicit TD-FEM based on first-order ODEs for room acoustics simu-
lation including PM absorbers. Numerical experiments demonstrated the efficiency of present scheme over fully
implicit scheme without reducing accuracy.
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