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Abstract
Many microphone array signal processing techniques, e. g., for beamforming or localization, rely on coherent
input signals. However, low inter-channel coherence may result from the occlusion of microphones, reverbera-
tion, or the presence of undesired signal components, so that the according signals contribute little to the overall
algorithmic performance. Thus, ranking the microphone channels by their utility for subsequent coherent signal
processing schemes is of considerable interest. Direct estimation of the pair-wise coherence is often straight-
forward in compact microphone arrays when all microphones share a common sampling clock, while wireless
acoustic sensor networks require a potentially costly time synchronization of the microphone signals. In this
case, estimating the channel utility ranking from simpler, single-channel features, e. g., statistical moments of
the time-domain signal waveform or of the corresponding magnitude spectrum instead of the signal coherence,
facilitates the clustering of useful sensor nodes for a particular task. Thereby, it is possible to determine whether
it is worth the effort to synchronize the sensor signals in a sensor network, and thus save computational power
and data rate if this is not the case. In this contribution, we investigate the efficacy of different single-channel
signal features for determining candidate sets of sensors signals for synchronization in sensor networks.
Keywords: Microphone utility, Channel selection, Sensor network

1 INTRODUCTION
Ongoing miniaturization of microphones and advances in wireless communication allow Wireless Acoustic Sen-
sor Networks (WASNs) to break into the consumer market. The multiple views of the acoustic scene offered
by distributed sensors allow signal processing algorithms to exploit this spatial information, e. g., for spatial
filtering or acoustic source localization. Many prominent examples like Minimum Variance Distortionless Re-
sponse (MVDR) [9] or MUltiple SIgnal Classification (MUSIC) [7] rely, directly or indirectly, on coherent
input signals. Consequently, signals with low inter-channel coherence contribute little to the overall algorithmic
performance or may even be detrimental. Poor signal coherence may be caused by asynchronous sampling of
channels or by a non-coherent sound field arising from, e. g., the position and orientation of the microphones
relative to the acoustic source, reverberation, and the occlusion of microphones. While the former is alleviated
by time synchronization of the recorded signals, the latter may require the exclusion of affected microphones
from subsequent processing. If the microphone channels are already synchronized, the readily observable signal
coherence offers a straightforward categorization of microphone channels by their usefulness for coherent signal
processing schemes. However, the microphones in WASNs often have no common sampling clock, such that es-
timation of the coherence entails a potentially costly synchronization of the sensor signals. Due to limited data
rate and computational power of typical network nodes, synchronization of all signals is infeasible, especially if
the number of microphones is large.
Thus, in this contribution, we focus on determining candidate sets of microphones for a subsequent synchro-
nization for coherent signal processing schemes based on established single-channel signal features. The feature
values are meant to be broadcasted between network nodes to allow an informed decision which subset of chan-
nels to synchronize. Subsequently, only these candidate signals would be transmitted, such that a prescribed data
rate in the WASN is not exceeded. Although synchronous sampling could reasonably be assumed for certain
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subsets of sensors, e. g., for the microphones of individual compact microphone arrays in a larger network, we
deliberately do not exploit inter-channel features to retain a broad scope of applicability.
In the literature, several utility measures based on inter-channel correlation have been proposed, whose com-
mon drawback is the requirement of synchronized signals. In [3], the MultiChannel Correlation Coefficient
(MCCC) is employed to select a pre-specified number of channels for beamforming as preprocessing for Auto-
matic Speech Recognition (ASR). An explicit channel utility measure for Linear Minimum Mean Square Error
(LMMSE) signal estimation is proposed in [2], which relies on the availability of all sensor signals at a central-
ized fusion center to estimate the (inverse) signal correlation matrix. A reduction of the number of transmitted
signals based on signal-subspace considerations is proposed in [1], however, still requiring the transmission of
the complete signals. In [4, 6], reducing the dimensionality of observations by linear mappings is proposed, but
the approach is tied to Minimum Mean Square Error (MMSE) parameter estimation. Besides correlation-based
measures, the selection of a single best channel for ASR based on properties of the Room Impulse Response
(RIR) [11] and based on signal features (energy, Signal-to-Noise Ratio (SNR), envelope variance and modula-
tion spectrum area) [12] has also been investigated. Furthermore, in the context of ASR, decoder-based channel
selection methods [8, 13] have been shown to improve recognition accuracy, but are only applicable to speech
signals, and obviously, unless ASR systems are already in place, the addition of per-channel recognition intro-
duces enormous computational overhead.
In this paper, vectors and matrices are denoted by bold-face lowercase and bold-face uppercase variables, respec-
tively. [x]k denotes the k-th element of the vector x and quantities pertaining to the n-th feature are indicated
by the superscript ·(n).
The remainder of this paper is structured as follows: in Section 2 we discuss the set of employed single-channel
signal features, Section 3 describes the proposed algorithm to generate candidate sets of sensors to synchronize.
The experimental setup and the obtained results are discussed in Section 4, and Section 5 concludes the paper.

2 FEATURES
In this section, we give a brief overview of possible single-channel features. Many different acoustic features
have been devised to describe sounds [5, 10]. Following the taxonomy in [5], we focus on instantaneous/short-
time features which are computed for each time frame k. We further restrict the selection to features which are
computed either directly from the temporal waveform (indicated in the following by the prefix ‘T’), or from the
corresponding spectral representation (indicated by the prefix ‘S’). For broad applicability, we do not assume a
particular signal model and also do not exploit perceptually motivated features. After these considerations, the
list of investigated features is chosen to comprise:

• central statistical moments of the signal waveform: ‘TSpread’, ‘TSkewness’, ‘TKurtosis’, reflecting esti-
mates of the standard deviation, the asymmetry and the flatness of the distribution of the sampled signal
waveform, respectively

• Zero-Crossing Rate: ‘TZCR’
• statistical moments of the signal magnitude spectrum: ‘SCentroid’, ‘SSpread’, ‘SSkewness’, ‘SKurtosis’,

reflecting estimates of the linear mean, the standard deviation, the asymmetry and the flatness of the
magnitude spectrum interpreted as a Probability Density Function (PDF), respectively

• spectral shape descriptors:
– ‘SSlope’, reflecting the slope of the linear regression function fitted to the magnitude spectrum
– ‘SFlatness’, ‘SAmpFlatness’, reflecting the ratio of geometric and arithmetic mean of the power

and magnitude spectrum, respectively
– ‘SRollOff’, reflecting the frequency below which 90% of the signal energy is concentrated

• temporal variation of spectra:
– ‘SFlux’, the difference quotient between the magnitude spectra of two successive signal blocks
– ‘SVariation’, the complement of the normalized inner product between the magnitude spectra of two

successive signal blocks
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Figure 1. Correlation matrices B (see (5)) of different features for Experiment 1 (see Section 4.2).

For an in-depth description and mathematical formulation of the features, we refer the reader to [5].
Consider a set of P spatially distributed microphones and the corresponding signals xp(t), p ∈ {1, . . . ,P}. Let

xp(k) =
[
xp(kMp +1) . . . xp(kMp +Lp)

]T ∈ RLp (1)

denote the k-th signal block of Lp samples obtained by sampling the p-th microphone signal xp(t), where Mp
denotes the shift between successive blocks in samples and t denotes continuous time. Note that Lp and Mp
generally vary across channels due to the lack of a common sampling clock. Given a single-channel, scalar
feature defined by the channel-wise mappings

Fp : RLp → R, (2)

we collect the corresponding feature values ap,k from K successive signal blocks of xp(t) in the vector

ap =
[
ap,1 . . . ap,K

]T ∈ RK with ap,k = Fp
(
xp(k)

)
. (3)

In the following, we omit the index p from Fp for the sake of a clear presentation. For the spectral features,
the definition of F in (2) includes the required Discrete Fourier Transform (DFT).
To capture the similarity of the p-th and the q-th microphone signal w. r. t. the feature F while incorporating
the temporal evolution of the corresponding feature values, we interpret the feature vectors ap, aq as time series
and compute the Pearson correlation coefficient

bp,q =
∑

K
k=1
(
ap,k−ap

)(
aq,k−aq

)√
∑

K
k=1
(
ap,k−ap

)2 ·
√

∑
K
k=1
(
aq,k−aq

)2
, (4)

where ap and aq denote the arithmetic averages of the elements of the respective feature vectors. Note that bp,q
is bounded to the range [−1,1] by definition and is symmetric w. r. t. p and q. The correlation coefficients from
(4) are arranged in a symmetric feature correlation matrix

B =

b1,1 . . . b1,P
...

...
bP,1 . . . bP,P

 ∈ [−1,1]P×P. (5)

Obviously, the diagonal elements of B are equal to one by construction.
Recalling Section 1, the overarching goal is the categorization of microphone channels based on single-channel
signal features instead of the signal coherence because the latter cannot be immediately observed due to possi-
bly asynchronous sampling. Anticipating the in-depth description in Section 4.1, the experimental setup consists
of five compact eight-channel microphone arrays. For illustration, let us consider Experiment 1 described in
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Figure 2. Schematic illustration of the proposed algorithm.

Section 4.2 as an example here, where the first two arrays are obstructed by an object. The corresponding
Magnitude-Squared Coherence (MSC) matrix in Figure 4a clearly allows the identification of the obstructed ar-
rays from their low MSC values. In line with intuition, signals of closely-spaced sensors are more coherent than
those of distant sensors, reflected by larger MSC values along the blockdiagonal. To avoid costly synchroniza-
tion of sensor signals, we want to extract the same channel similarity information from the feature correlation
matrices, shown in Figure 1 for the same scenario. By simple visual inspection, four features stand out due to
the similarity of their correlation matrices to the MSC matrix: ‘TSkewness’, ‘TKurtosis’, ‘SFlux’ and ‘SVaria-
tion’. In the presented example, all of them reflect the obstruction of the first two arrays, as well as the higher
intra-array channel similarity. Hence, we will only consider the features ‘TSkewness’, ‘TKurtosis’ and ‘SFlux’
in the experimental evaluation in Section 4. The feature ‘SVariation’ is omitted since it is conceptually closely
related to ‘SFlux’, but does not capture the groups of obstructed and uncovered sensors as accurately.

3 ALGORITHM
In this section, we propose an algorithm to determine candidate sets of sensors for subsequent synchronization
from multiple single-channel signal features, schematically illustrated in Figure 2. Interpreting correlation as an
indicator for similarity of two signals, we assume that similar microphone signals also exhibit similar features.
The pair-wise similarity information of microphone channels w. r. t. a set of selected single-channel features,
captured by the matrix B(n) for the n-th feature, is fused by concatenating the principal left singular vectors
of the intermediate, channel-wise correlation matrices Cp. Candidate sets of similar microphones are extracted
from the resulting overall channel similarity matrix R by a second Singular Value Decomposition (SVD).
Given a set of N single-channel, scalar features defined by the mappings F (n) : RLp → R with n ∈ {1, . . . ,N},
we compute the corresponding feature correlation matrices B(n) as defined in (5). While we consider only scalar
features in this contribution, in principle, vector-valued signal features may be passed to the algorithm developed
in this section, if the vector elements can be treated as independent such that a feature correlation matrix can
be constructed for each element.
To obtain the overall pair-wise similarity between channels across all features, we form an intermediate matrix
of correlation coefficients Cp for each channel p w. r. t. the N selected features and compute its SVD

Cp = GpDpTT
p =


b(1)p,1 . . . b(N)

p,1
...

...

b(1)p,P . . . b(N)
p,P

 ∈ [−1,1]P×N (6)

where Gp =
[
gp,1 . . . gp,P

]
∈ RP×P and Tp =

[
tp,1 . . . tp,N

]
∈ RN×N denote the matrix of left and right

singular vectors of Cp, respectively, and Dp ∈RP×N denotes the diagonal matrix of singular values in decreasing
order. The prevalent “concept” of similarity is captured by the principal left singular vector gp,1, i. e., the first
column of Gp. By discarding the remaining singular vectors, this similarity concept is emphasized while the
influence of features opposing the consensus is reduced. The principal singular vector gp,1 is normalized by

rp = gp,1/[gp,1]p (7)
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such that its p-th entry is equal to one. Thus, rp can be interpreted as a similarity measure between all channels
and the p-th channel. Subsequent concatenation yields the final channel similarity matrix

R =
[
r1 . . . rP

]
∈ RP×P, (8)

whose diagonal elements are equal to one due to the normalization in (7). However, by construction, R no
longer exhibits the symmetry as B(n) did, which is visible in Figure 6. We refrain from an Eigenvalue De-
composition (EVD) of R due to the resulting complex eigenvalues. In the special case of identical B(n), R is
symmetric, however no benefit is gained by considering more than one feature because R = B(n),∀n holds in
this case. To extract candidate sets of sensors for synchronization, we perform a second SVD

R = USVT, (9)

where U =
[
u1 . . . uP

]
∈ RP×P and V =

[
v1 . . . vP

]
∈ RP×P contain the left and right singular vectors of

R, respectively, and the diagonal matrix S = diag{σ1, . . . ,σP} ∈RP×P contains the corresponding singular values
σp on the diagonal in decreasing order. Similar to the SVD in (6), the left singular vectors can be interpreted as
concepts of similarity across sensors. Note that the principal left singular value gp,1 in (6) captures the dominant
similarity concept of the p-th sensor to all sensors across multiple features. In contrast, the left singular vectors
up in (9) reflect the similarity between groups of sensors by considering the square similarity matrix R instead
of the channel-wise matrix Cp. Thus, for each concept up, a group assignment for the q-th sensor can be
done by inspecting the corresponding vector element [up]q. A straightforward choice is the assignment to one
of two groups of similar sensors which exhibit high intra-group similarity and low inter-group similarity based
on the sign of [up]q: sensors with a positive value form one group, while the remaining sensors form the
complementary group.
Note that there is no restriction regarding the rank of R, such that arbitrarily many non-zero singular values
can result from (9). In the extremal case of uncorrelated signal features, R degenerates to an identity matrix
with P singular values equal to one. Choosing an appropriate number of singular values to consider is non-
trivial and the discussion of such strategies is beyond the scope of this paper, although a straightforward option
is basing the decision on the singular value distribution itself, e. g., by choosing all singular values above a
prescribed threshold. Another option is the selection of a fixed number of promising candidate sets to be
explored, depending on the available computational budget for synchronization.

4 EXPERIMENTAL EVALUATION
In this section, we describe the recording setup and discuss the experimental results.

4.1 Setup
The experimental setup is illustrated in Figure 3. A loudspeaker is placed in a room of dimensions 6.26m×
4.86m× 3m, depicted in Figure 3a, with a reverberation time of T60 ≈ 320ms. Five concentrated microphone
arrays each consisting of eight microphones, depicted schematically in Figure 3b, are placed in a quarter circle
around the loudspeaker at a distance of 2m, with the loudspeaker facing the central Array 3. All microphone
arrays are oriented to face the loudspeaker and are driven by a common sampling clock, which allows the
signal coherence to be estimated for reference. Optionally, Arrays 1 and 2 can be obstructed by a large wooden
board (roughly 1m wide and 2m high), shown in Figure 3a as a bold, red line. The signals are processed at
a sampling rate of fs = 16kHz. A signal block consists of Lp = L = 1024 samples (64ms), while successive
blocks are shifted by Mp = M = 512 samples (32ms) for an overlap of 50%. We employ 22s of adult male
speech as the loudspeaker signal resulting in K = 690 available signal blocks, although our experiments have
shown very similar results with adult female speech, child speech and music. As explained in Section 2, the
employed set of features consists of ‘TSkewness’, ‘TKurtosis’ and ‘SFlux’, so that N = 3.
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Figure 3. Experimental setup.

4.2 Experiment 1: with obstruction
For the first experiment, we consider the setup in Figure 3a with the obstruction present, i. e., microphones 1–16
are obstructed while microphones 17–40 are uncovered. While the obstruction does not affect the speech intelli-
gibility when listening to the signals, a clear reduction of the MSC is visible in Figure 4a which is reflected by
the similarity matrix R in Figure 4b. The corresponding singular values and left singular vectors are shown in
Figure 4c and Figure 4d, respectively. The first singular vector, corresponding to the dominant singular value,
highlights the overall similarity of all channels in accordance with the subjective listening impression, although
differences between the obstructed and uncovered microphones are visible. The second singular vector, whose
singular value is still noticeably larger than the remaining ones, emphasizes the difference between the group of
obstructed microphones (channels 1–16) and the uncovered microphones (channels 17–40). The third singular
vector captures the differences between the two obstructed arrays (channels 1–8 vs. channels 9–16). Finally, the
fourth and fifth singular vector similarly reflect the nuanced differences within the uncovered microphones.

4.3 Experiment 2: without obstruction
For the second experiment, we consider the setup in Figure 3a without obstruction. Like for the previous
experiment, R and the results of its SVD are illustrated in Figure 5. The first singular value is now even
more dominant, while the elements of the corresponding singular vector are essentially identical, highlighting
the high similarity across all channels. Since there is no obstruction to introduce a clear distinction between
two groups of microphones, the remaining singular vectors highlight feature variations due to other factors. For
the second and third singular vector, these can reasonably be identified with the microphone array positions in
the recording room. While the former distinguishes between sensors on either end of the spatial setup, the latter
approximately captures the proximity of each sensor w. r. t. the acoustic axis of the loudspeaker.

4.4 Number of feature frames
In practice, a quick decision which sensors to synchronize is obviously desirable. However, as fewer observa-
tions are used, the estimation variance of the correlation coefficient in (4) increases. Hence, we investigate the
structure of R under the conditions of Experiment 1 for different numbers of signal blocks K by truncating the
recorded signals after the specified number of blocks. The results in Figure 6 indicate that a correct categoriza-
tion of channels is possible for as low as K = 30 (1s signal duration). For even shorter durations like K = 15,
a lot of the structure in columns 1–8 is lost. Note that in all cases, a signal onset period is present, during
which the employed features exhibit the largest variability. In conclusion, while more signal blocks reduce the
estimation variance, the presence of signal onsets appears vital for an accurate categorization.
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(b) Similarity matrix R.
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Figure 4. Results for Experiment 1 (microphones 1–16 obstructed, microphones 17–40 uncovered.).
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Figure 5. Results for Experiment 2 (all microphones uncovered).
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Figure 6. R for different number of signal blocks K.
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5 CONCLUSION
In this contribution, we demonstrated the efficacy of different single-channel signal features for estimating the
microphone utility for coherent signal processing. We presented a method to fuse the channel similarity in-
formation w. r. t. different features by computing the principal singular vector of an intermediate, per-channel
similarity matrix. Candidate groups of sensors for subsequent synchronization are obtained by SVD of a matrix
constructed from the principal singular vectors reflecting the prevalent “concept” of similarity of all channels
w. r. t. a particular reference channel. The experiments confirm that groups of similar sensors can be identified
for non-Gaussian signals. The presence of signal onset periods allows a categorization of sensors when only
few observations are available.
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