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Abstract
The thermal and viscous boundary layers (TVBL) around a resonator’s neck play important roles in the absorp-
tion, particularly when there is no porous material near the neck. This paper presents a simple implementation
of a TVBL boundary condition for the three-dimensional finite element analysis of Helmholtz equation. The
implementation is verified by comparing normal incidence absorption coefficients calculated and measured for
slit-type resonators. Good agreement can be observed under the appropriate calculation setting. Subsequently, a
detailed investigation is conducted on surface impedances of Helmholtz resonators composed of circular holes
and square baffles. Numerical values are compared with analytical values based on the classical models such as
Maa, Allard–Ingard and so on. It is demonstrated that the presented method convincingly captures the surface
impedance on an acoustic resonator unless the TVBL thicknesses are much larger than the perforation diameter.
Keywords: Viscous and thermal boundary layer, Finite element method, Helmholtz resonator

1 INTRODUCTION
Predicting the absorption performance of resonators is of great interest for noise control engineers. The

thermal and viscous boundary layers (TVBL) around a resonator’s neck play important roles in the absorption,
particularly when there is no porous material near the neck. Several papers have been dedicated to the numer-
ical prediction of resonator’s absorption performance. The recently proposed approaches have been based on
computational fluid dynamics [1] or the viscothermal acoustic elements [2]. Accordingly, relatively high compu-
tation and implementation costs are required. This paper concerns another simple approach that is based on the
equivalent boundary condition of TVBL in the conventional Helmholtz equation [3, 4]. Despite its effectiveness,
the details of the implementation have not been presented, especially where giving the TVBL boundary condi-
tion. Furthermore, to the authors’ best knowledge, three-dimensional analysis has not been performed yet. This
may be caused by the apparent difficulty of evaluating the tangential Lhaplacian term for the viscous effect on
the boundary.

This paper presents the finite element implementation of the TVBL boundary condition for three-dimensional
frequency-domain problems. This implementation is applied to analyze the absorption characteristics of slit-type
and Helmholtz resonators, and the appropriate calculation setting is clarified.

2 FINITE ELEMENT IMPLEMENTATION
2.1 TVBL Boundary Condition

The time convention is e jωt throughout this paper. The boundary condition taking the effect of thermal and
viscous boundary layers into account is given in [5] as

∂ p
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=− jωρ0
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where p,ρ0,c0, and Zn are the sound pressure, air density, sound speed, and normal-incidence surface impedance,
respectively. ∇2

tan is the Laplacian operator in the tangential plane of the boundary and ∂/∂n is the normal
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derivative to the plane. Rt and Rv are the thermal and viscous resistances, which are related to the thicknesses
of the thermal and viscous boundary layers, δ ′ and δ , as follows:

Rt =
1
2

ρ0ω(γ −1)δ ′, δ ′ =

√
2µ

ρ0ωNpr
and Rv =

1
2

ρ0ωδ , δ =

√
2µ

ρ0ω
, (2)

where γ,µ , and Npr are the heat capacity ratio, viscous coefficient, and Prandtl number of the air, respectively.
Note that several signs in the above are modified from those in [5] owing to the time convention e jωt . To
simplify Eq. (1), it is rewritten as

∂ p
∂n

=− jkβ p− ( jω)3/2cT p− ( jω)−1/2cV∇2
tan p (3)

where β is the normalized admittance and the frequency-independent coefficients, cT and cV, are defined as
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γ −1

c2
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and cV =

√
µ
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. (4)

Obviously, the TVBL boundary condition involves a fractional derivative in the time domain expression, which
makes it difficult to use in time domain analysis. On the other hand, this paper focuses on the treatment of the
boundary condition in frequency domain analysis.

2.2 Weak Formulation of the Helmholtz Equation
The weak form of the Helmholtz equation, ∇2 p+ k2 p = 0, is given as∫

Ω
∇δ p ·∇pdV − k2

∫
Ω

δ p · pdV −
∫

Γ
δ p

∂ p
∂n

dS = 0, (5)

where δ p is the admissible variation and ∇ is the nabla operator. Substituting Eq. (2) into Eq. (3), the
following equation is obtained:∫

Ω
∇δ p ·∇pdV − k2

∫
Ω

δ p · pdV + jkβ
∫

Γ
δ p · pdS+( jω)3/2cT

∫
Γ

δ p · pdS+( jω)−1/2
∫

Γ
δ p ·∇2

tan pdS = 0. (6)

The main difficulty of the implementation is to evaluate the fifth boundary integral term. Although the
interpolation function must be differentiable twice or more to evaluate the term directly, this requirement can
be reduced by applying Green’s first identity in two-dimensions as follows:∫

Γ
δ p ·∇2

tan pdS =−
∫

Γ
∇tanδ p ·∇tan pdS+

∫
∂Γ

δ p · (∇tan p ·nc)dC (7)

where ∇tan is the gradient operator in the tangential plane and nc is the outward normal vector to the contour
of the boundary surface. Accordingly, the energy dissipation along the contour should be evaluated in the latter
term, which makes the global system matrix asymmetric.

2.3 Evaluation of the Tangential Gradient Term
This section presents an algorithm to evaluate the tangential gradient term in the generalized curvilinear

local coordinate set in the boundary elements. In the first, let us consider the local coordinate (ξ ,η) that
is usually set for the numerical integration in the finite element method. Then the global coordinate values
in an element are interpolated with the shape functions Ni(ξ ,η) and the nodal coordinate values (xi,yi,zi) as
x = ∑i Ni(ξ ,η)xi and so on. The covariant basis vectors of the tangential plane, eξ and eη , are given as follows.

eξ (ξ ,η) =
∂x(ξ ,η)
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where ex,ey,ez are the unit basis vector of the global Cartesian coordinate. On the other hand, the contravariant
basis vectors of the tangential plane, eξ and eη , are given as follows:

eξ =
eη × eζ

eξ · (eη × eζ )
, eη =

eζ × eξ

eη · (eζ × eξ )
. (9)

where eζ is the normal vector to the tangential plane defined as eζ = eξ × eη . The tangential gradient vectors
in Eq.(4) can be expressed by using the terms of the general curvilinear local coordinate as follows.
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Finally, the first term of Eq.(4) can be rewritten as∫
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where |J| is the Jacobian at each point in an element and defined as |J| = |eξ × eη |. The integrand in Eq.(11)
can be easily evaluated at the gauss quadrature points. Furthermore, the second term of Eq.(4) can be rewritten
as ∫

∂Γ
δ p · (∇tan p ·nc)dS =

∫
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)
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This contour integral should be calculated for surface elements adjacent to ∂Γ.

3 PREDICTION OF THE NORMAL-INCIDENCE ABSORPTION COEFFICIENT
3.1 Slit-type Resonators

In [3], the TVBL boundary condition was implemented in the two-dimensional boundary element method
(BEM), where the term of ∇2

tan p was directly evaluated using the finite differences of sound pressures between
neighboring elements. This implementation was applied to estimate the normal-incidence absorption coefficients
of slit-type resonators, and the results were confirmed to be in good agreement with measured values. In this
section, to clarify the appropriate setting of the implementation, slit-type resonators are examined by the three-
dimensional finite element method (FEM), and the results are compared with BEM results and the measured
values in [3].
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Figure 1. Horizontal geometry of the duct with a slit-type resonator.
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In the FEM analysis, a 100-mm-square duct with a slit-type resonator is modeled, where all surfaces are
as-sumed to be rigid (β = 0). Figure 1 shows the horizontal geometry of the model and the notation of the
boundaries. These conditions correspond to those of the measurement in [3]. As a broad setting, the TVBL
boundary condition is given to the end surface of the duct (ΓD), the front surface of the cavity (ΓC), and
the side, upper, and bottom surfaces of the slit neck (ΓN). On the contours of ΓD and ΓC, ∇tan p · nc is zero
except along the edges of the neck. Thus, contour integrals are evaluated along the edges (∂ΓD,∂ΓC,and∂ΓN).
Second-order prism and hexahedral elements are used, and a fine mesh is applied as illustrated later in Fig.
4(a). The normal-incidence absorption coefficients are calculated by the transfer function method at 1/24-octave
band center frequencies [6].

Figure 2 shows the calculated and measured results for four slit-type resonators with different combinations
of the width and depth of the neck. The FEM results are given for three different settings, and the BEM and
measured results are cited from [3]. The FEM results with the above broad TVBL setting are represented by
red lines. The calculated values for the 4-mm-width slit correspond relatively well with the BEM and measured
ones, whereas those for the 2-mm-width slit are slightly larger than the others. Nevertheless, this TVBL setting
for the FEM seems reasonably reliable.

Next, a narrow TVBL setting only in the neck (ΓN) is examined. As can be seen from the results rep-
resented by blue lines, the calculated values are considerably greater than those with the broad setting. This
overestimation of the absorption coefficient may be caused by intensification of the edge potential around the
openings of the neck due to the lack of a tangential drag force on ΓD and ΓC.

Therefore, it is suggested that the TVBL boundary condition should be given to two surfaces along an edge.
If the asymmetric contour integral term for edges, Ic, can be neglected, the calculation becomes more efficient.
However, the absorption coefficients calculated without Ic, represented with green lines, are lower than the red
lines. This demonstrates that the energy dissipation at edges around a resonator’s neck must be considered to
predict the absorption coefficient accurately.

In the above calculation, fine meshes were used because the acoustic field around the neck is expected to
change sharply. Figure 3 shows the results calculated with the fine and coarse meshes illustrated in Fig. 4.
As a fixed condition, two hexahedral elements are generated in the direction of the slit width. The maximum
lengths around the neck are 2 and 10 mm for fine and coarse meshes, respectively. It can be seen that the
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Figure 2. Normal-incidence absorption coefficients of four slit-type resonators calculated by the FEM with three
different settings. The BEM and measured values for PVC are cited from [3].
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Figure 5. Normal-incidence absorption coefficients calculated for two Helmholtz resonators with different sizes,
Types (a) and (b).

results for the coarse mesh are slightly greater than those for the fine mesh, but the difference is not significant
when predicting the absorption coefficient.

3.2 Helmholtz Resonators
As a typical example of three-dimensional resonators, Helmholtz resonators are analyzed under a similar setting
to that in the previous section, where the cross sections of the cavity and duct are identical and square. In the
FEM calculation, the TVBL boundary condition is given to the front and back surfaces of the perforated baffle
and the cylindrical surface of the neck. The normalized admittance β is assumed to be zero for all surfaces.
The FEM results are compared with the existing theoretical models of Atalla and Sgard [7] and Maa [8]. The
resistance and inertial correction terms are approximately derived for periodic resonators in the Atalla—Sgard
model and for a single resonator in the Maa model. Note that the resistance correction of the Maa model is
based on [7].

Figure 5 shows the calculated results for two resonators with different sizes. It can be seen that all the theo-
retical and FEM results are relatively correlated but slightly different in terms of the peak value and frequency.
The sound field in the duct is equivalent to the normal-incidence field over the periodic resonators. However, the
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FEM results are closer to the Atalla-–Sgard model for Type (a) but closer to the Maa model for Type (b). This
inconsistency implies that the interactive motion of the neck and cavity considerably affects the resistance and
inertance corrections for the neck’s impedance. From this viewpoint, the FEM may be advantageous because
the effects of the interaction are automatically incorporated.

4 PREDICTION OF THE SURFACE IMPEDANCES
This section discusses the surface impedance of Helmholtz resonators in more detail in order to clarify the
applicable condition of the TVBL boundary condition. In this study, Maa model is employed as the theoretical
reference. The analytical effective density for the cylindrical pore, ρ ′, shows the low- and high-frequency
asymptotic behaviors as follows.

ρ ′ = ρ0

[
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√
− j

]−1
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4
3
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1
jω
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18η
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ρ0 +
1
r

√
2ρ0η

ω
(1− j), for ω >

32η
ρ0r2 = ωH (14)

4.1 Numerical Models of Helmholtz Resonators
Figure 6 shows the numerical models for calculating the surface impedance by transfer function method. The

cross-section of the tube is the square with D mm side. The perforation is placed in the center of the square.
In order to better understanging, two neck models of Helmholtz resonators are employed: in model A, ρ ′ is
given as the air density inside the resonator neck, whereas in model B, ρ0 is given and the TVBL boundary
condition is given to the peripheral surface of the neck. The TVBL boundary condition is give to the baffle
surfaces in both models. For the sake of completeness, the sound pressures averaged over the cross-section are
used for the transfer function method to exclude any scattered oblique waves.

The calculation was excuted at 1/3 octave band center frequencies with the following parameters. Hole
radius is set to 0.25, 0.5, 1.0 and 2.0 mm. Two combinations of neck length, L mm, and hole pitch, D mm,
are set: (a)(L,D) = (1,10) and (b)(L,D) = (4,20).

4.2 Results and Discussions
Figure 7 shows the surface resistance, reactance and the absorption coefficient under the normal incidence

condition. As a general tendency of the resistance, model A below ωL and model B above ωH show good
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Figure 7. Normalized absolute surface resistance and reactance and normal-incidence absorption coefficient
calculated for different combinations of neck length(L), neck radius(r) and hole pitch(D). Circle markers denote
that the value was negative. Star markers denote the lower limit of surface resistance (8ηLD2/πr4). Solid and
chain lines are for model A and B, respectively.

correlation with the theoretical reference. The resistance of model A becomes lower than the theoretical ref-
erence in entire frequency range above ωL. On the other hand, model B does not capture the low-frequency
asymptotic behavior. Regarding the reactance, in particular for r = 0.25 mm, the model B does not reflect the
apparent increase of the mass-reactance indicated as the factor 4/3 of Eq.(13), which causes the shift of the
absorption peak. These tendencies demonstrate that the reliability of the TVBL boundary condition becomes
lower below ωL for the cylindrical pores. Besides, the resistances determined by the numerical calculations
become negative in the high frequencies in several cases. A cause of this unpreferable behavior may be due to
the approximation in the derivation of the TVBL boundary condition. This point should be investigated more
carefully in future work.

5 CONCLUSION
This paper presented and verified the finite element modeling of acoustic resonators with thermal and vis-

cous boundary layers. It was confirmed that the TVBL boundary condition should be given not only to the
side surfaces in the resonator’s neck but also to the front and back surfaces of the perforated baffles. Fur-
thermore, the energy dissipation at the neck’s edges was not negligible. Thus, an asymmetric matrix equation
should be solved. Numerical methods are advantageous for predicting the absorption performance of resonators
not only because of their capability of handling resonators with complex shapes, but also because the resis-
tance and reactance corrections are automatically incorporated, reflecting the acoustic field around the neck.
However, it should be emphasized that the TVBL boundary condition should be applied with great care for
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some frequency ranges. In the low frequencies, the TVBL boundary condition cannot express the low-frequency
asymptotic behavior of the effective density in the pores. On the other hand, in the high frequencies, the TVBL
boundary condition employed in this paper may involve some erroneous approximation in its derivation, which
cause physically unreasonable behavior in the surface resistance. In future work, the presented results should be
verified by comparison with those of more exact methods such as those in [1, 2].

REFERENCES
[1] J. S. Bolton and N. Kim, “Use of CFD to calculate the dynamic resistive end and correction for microperfo-

rated materials,” Acoust. Aust., 38, 134–139 (2010).

[2] W. R. Kampinga, Y. H. Wijnant and A. de Boer, “An efficient finite element model for viscothermal acous-
tics,” Acta Acustica united with Acustica, 97, 618–631 (2011).

[3] K. Monjyugawa, M. Terao and H. Sekine, “Numerical analyses and high precision experiments on acoustic
resistances of slit resonators,” Proc. Spring Meet. Acoust. Soc. Jpn., 639–640 (2000) (in Japanese).

[4] S. Sakamoto, H. Mukai and H. Tachibana, “Numerical study on sound absorption characteristics of reso-
nance-type brick/block walls,” J. Acoust. Soc. Jpn., 21, 9–15 (2000).

[5] P. M. Morse and K. U. Ingard, Theoretical Acoustics, (Princeton University Press, New Jersey, 1968), Chap.
6.

[6] N. Inoue and T. Sakuma, “Numerical investigation of effect of support conditions of poroelastic materials
in impedance tube measurement,” Acoust. Sci. & Tech., 38, 213–221 (2017).

[7] N. Atalla and F. Sgard, “Modeling of perforated plates and screens using rigid frame porous models,” J.
Sound Vib., 303, 195–208 (2007).

[8] D. Maa, “Potential of microperforated panel absorber,” J. Acoust. Soc. Am., 104, 2861–2866 (1998).

2012


