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ABSTRACT
Prediction of sound propagation is playing a key role in the planning and design process of urban areas and during

the last decades different techniques have been developed for the computation of the sound fields in cities. Among

them, the diffusion equation, based on the propagation of sound energy, is a simple and attractive tool for certain

scenarios where the diffuse field is predominant, such as inner city environments. The diffusion equation is a well-

known and efficient method to compute sound fields in rooms with a low amount of absorption. However, this

method, which includes the diffusion coefficient describing the diffusivity of the energy propagation, requires further

understanding for urban environments. In this work, the diffusion coefficient has been evaluated using wave-based

numerical techniques for simplified two-dimensional urban scenarios. The parameter is computed spatially from the

acoustic intensity and sound energy density fields in every direction for different geometries. This paper investigates

the directional components of the diffusion coefficient.
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1 INTRODUCTION
The diffusion equation describes sound propagation by a diffusion process of the sound energy. The method relies

mainly on a single parameter - the diffusion coefficient D - that requires further understanding for urban environments.

The hypothesis assumed in this paper is that the sound field can be approximated by a diffusion process in canyon-type

street configurations. For these cases, the diffusivity of sound energy has different properties in different directions

and as a consequence, the diffusion coefficient is not uniform (1). Although some authors have derived analytical

expressions or methodologies to estimate the coefficients for urban cases, for instance (1) and (2), there is still a

lack of knowledge regarding how the diffuse sound energy propagates in these cases. The main contribution of

this paper is to investigate the directional components of the diffusion coefficient by using a novel methodology to

spatially compute D using solutions of a wave-based method for simplified urban environments. Section 2 presents

the principles of the diffusion equation for sound propagation with special emphasis on the presentation of the non-

homogeneous and directional diffusion coefficient for urban cases. In this work, the computation of the coefficients

is done by using the sound pressure and acoustic velocity as calculated by the discontinuous Galerkin (DG) wave-

based time domain method; the approach is also valid for any numerical method that allows the steady state acoustic

intensity and sound energy density to be computed at discrete positions of the domain under investigation. The

full methodology of obtaining the diffusion coefficients is detailed in Section 3. The approach has been used in

two simplified two-dimensional scenarios, described in Section 4: a straight, long street and an intersection of two

perpendicular long streets. The solutions of the diffusion coefficients for these scenarios are presented in Section 5

and the final conclusions can be found in Section 6.
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2 THE ACOUSTIC DIFFUSION EQUATION
Fick’s first law, adapted to a diffuse sound energy field, is presented in Equation 1, where w(r, t)

[
kgm−1 s−2

]
is

the sound energy density. This law states that the flow of acoustic energy (sound intensity vector J
[
kgs−3

]
) occurs

from regions of high energy to areas of low energy concentration, with a proportionality relation between the acoustic

intensity and the sound energy density gradient (∇w). The proportionality factor in the equation is the diffusion

coefficient D [m2 s−1]. The derivation of Fick’s second law - or more popularly the diffusion equation (DE) - for

diffuse sound fields was presented by (4) (see Equation 2). The absorption by the domain surfaces is included in σ
[s−1], which represents the probability rate of a sound particle to be absorbed during one second. The DE presented

in Equation 2 represents sound energy density propagation in the time domain. In order to obtain frequency solutions,

the equation needs to be resolved for each frequency band of interest separately.

J(r, t) =−D∇w(r, t). (1)

∂
∂ t

w(r, t) = D∇2w(r, t)−σw(r, t). (2)

The diffusion coefficient is defined for room acoustics problems by Valeau et al. in (3) as a term of the diffusion

equation that takes into account the room morphology through the mean free path λ [m]. This classical definition

corresponds with the theoretical derivations presented in (4) for rooms of proportionate dimensions, where D takes

a constant value depending on the geometrical properties of the space as D = λc0/3, where c0 is the sound velocity

and λ = 4V/S, with V and S the volume and surface area of the proportionate room. However, when the space is

more complex, as for instance in a long room or in a canyon-type street, the diffusion coefficient is not as simple.

Visentin et al. (5) carried out an investigation to study the validity of Fick’s law of diffusion in room acoustics from

a numerical evaluation of the gradient Equation 1. One of the main conclusions of the study was that D = λc0/3,

is only valid in areas close to the source in long rooms, while linearly increasing with distance from the source.

Therefore, they proved that the sound field in long rooms is described by non-homogeneous diffusion, i.e., with a

spatially varying diffusion coefficient. In this type of space, where one dimension is much bigger than the others,

the mean free path is not homogeneous and spatially depends on the location of the source and receiver. In receiver

areas close to the source in an infinite long room, the distance between successive reflections is shorter (limited by

the distance between parallel surfaces when the sound waves travel as a standing wave in the corridor), than in areas

far from the excitation, where the sound waves have on average a larger angle with respect to the source (assuming

zero degrees angle is perpendicular to the side walls). The hypothesis assumed in the present paper is that the sound

field can be approximated by a diffusion process in canyon-type streets configurations by using the DE model as

presented in Equation 2 without fundamental modifications. In this type of street, the diffusivity of sound energy

has different properties in different directions and, as a consequence, the diffusion coefficient is not uniform and

depends on the direction of propagation (1). The spatially dependent directional diffusion coefficients are presented

in Equation 3 for three-dimensional rectangular streets in Cartesian coordinates. The diffusion gradient Equation

2, assuming the diffusion coefficients D(r) given in 3, is employed to calculate the spatially dependent directional

diffusion coefficients of urban cases.

D(r) =

⎛
⎝

Dx(r) 0 0

0 Dy(r) 0

0 0 Dz(r)

⎞
⎠ . (3)
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3 METHOD TO OBTAIN THE DIFFUSION COEFFICIENT FOR URBAN APPLICA-
TIONS

In this Section, the methodology for obtaining spatially dependent directional diffusion coefficients D(r) is presented.

The approach begins with the frequency domain J( f ) and ∇w( f )1, calculated from solutions of a full wave-based

method at a large number of equally-spaced discrete locations in the physical domain under investigation. The method

is detailed for two-dimensional rectangular cases. The approach is based on solving Equation 1 by evaluating the ratio

between the solutions of the steady state components of J and the corresponding energy density gradients ∇w.

One assumption in the derivation of the diffusion Equation 2 is that the variations per mean free path of w, J, and

thus D, must be small. However, the solutions of a full wave-based method, as proposed here, implicitly include

the interference effects due to the wave nature of sound propagation and therefore, the results are not as smooth as

the diffusion equation would demand. In order to reduce this effect, calculating the energy density and the intensity

in broader frequency bands, as indicated in Section 3.1, contributes to smoothing the results, as well as the local

spatial averaging, performed according to Section 3.2. After the calculation and local averaging, the sound energy

density gradient is computed as presented in Section 3.3. In Section 3.4, the gradient and the acoustic intensity

are then averaged over the narrow dimension of the street. Before obtaining the diffusion coefficients, a smoothing

process over the acoustics intensity and sound energy density is applied according to Section 3.5. Finally, the diffusion

coefficients are obtained according to Section 3.6. Additionally, the variations per mean free path of the energy density

and the acoustic intensity are not expected to be smooth along the narrow dimension of a street canyon. Therefore, the

methodology presented in this section is only employed for computing the diffusion coefficients along the direction

of the biggest dimension of the street.

3.1 Broad band frequency calculation

The energy density and the active part of the acoustic intensity, indicated generically in Equation 4 by Ψ(r, f ), are

calculated for a broad frequency band fbb by a summation of the results from the lowest frequency of interest fl to

the highest fu, as indicated in Equation 4.

Ψ(r, fbb) =
fu

∑
f= fl

Ψ(r, f ). (4)

3.2 Receivers and local spatial averaging process

A large number of discrete locations r in the spatial domain is needed in order to obtain a meaningful representation

of the sound field to get the diffusion coefficients. The total number of receivers in the whole domain is Nr and the

distance between receivers is denoted as Δr [m] for every Cartesian dimension. Δr is chosen to be constant everywhere

in the domain for the ease of the averaging process and the later calculation of the spatial energy gradient. The spatial

average of the broadband w and J are computed at a number of equally spaced recording positions in each Cartesian

direction nr (same number in each direction). They are arithmetically averaged and the result is assigned to the central

position. The total number of averaged positions is nr = n2
r . The total number of evaluation positions Nr is reduced to

Nr = �Nr/nr�, and the distance between positions is now Δr. The averaged frequency solutions are referred as Jx(r),
Jy(r) and w(r) for a certain frequency range.

3.3 Energy density gradient calculation

The next step is to compute the energy density gradient over the whole domain by using central differences for interior

data points, while using single-sided differences along the edges of the domain. The following notation is used for

the spatial discretisation of the energy density in the two-dimensional domain: wi, j = w(iΔr, jΔr). The gradient

1Unless otherwise indicated, the reference to the frequency domain in the solutions has been omitted for subsequent references to these quanti-

ties, i.e. J( f ) = J and ∇w( f ) = ∇w.
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calculation in the x-direction is described in the following Equations 5 for interior data points and 6 for the positions

located at the edges (equivalent expressions are used for the y-direction), where Nx is the total number of averaged

points in the x-direction:

∇xwi, j ≈ wi+1, j −wi−1, j

2Δr
,

(5)

∇xw1, j ≈ w2, j −w1, j

Δr
, ∇xwNx, j ≈

wNx, j −wNx−1, j

Δr
. (6)

3.4 Averaging from 2D to 1D solutions

Since the streets considered in this approach are rather narrow, a second spatial averaging process is performed over

the results Jx(r), Jy(r), ∇xw(r) and ∇yw(r). Essentially, the two-dimensional solutions are transformed into a set of

one-dimensional results for each Cartesian dimension by spatially averaging the results over the other direction. In

this approach, it is assumed that the solutions are constant along the narrower dimension of the street. When one of

the results is expressed, for instance, by Jx(rx), it means that the values have been averaged and only spatial values

along the x-dimension remain, i.e. the values in the y-direction have been averaged.

3.5 Smoothing process over the sound energy density and the acoustic intensity

Despite the spatial averaging process and the calculation of solutions in a broad frequency band, the results still

present strong variations within the spatial domain. In order to reduce these local variations, a moving averaged

process is applied to the solutions obtained in the previous Section 3.4, that is equivalent to low-pass filtering the data.

The response of the smoothing process is given by the Equation 7 for a generic solution ψx(rx). The filter smooths

the data by replacing each data point with the average of the neighbouring data points defined within a certain span

defined as nspan = 2Nsm +1.

ψx,sm(i) =
1

(2Nsm +1)
[ψx(i+Nsm)+ψx(i+Nsm −1)+ · · ·+ψx(i−Nsm)], (7)

where ψx,sm(i) is the smoothed value for the ith data point and Nsm is the number of data points at each side of point i.
The span must be an odd integer number. Moreover, the end points of the function are not smoothed. Finally, the span

is adjusted for data points that cannot accommodate the specified number of neighbours on either side by reducing

the number of points.

3.6 Calculation of the diffusion coefficient

The diffusion coefficients are finally computed at the averaged positions, for the frequency range of interest, using

Equation 8 for the x-dimension and an equivalent expression for the y-dimension.

Dx(rx) =− Jx(rx)

∇xW (rx)
, (8)

4 WAVE-BASED URBAN SCENARIOS
Two simplified urban problems have been investigated in this paper: a straight, long street (LS) and the perpendicular

intersection of two long streets (LX). The two-dimensional domains are shown in Figure 1a. The façades of the

scenarios are built using quadratic residue diffusers (QRDs) in order to obtain high values of the surface diffusion

(dΨ) and scattering (s) coefficients. The arrangement of the QRDs followed the indications in (7) and the design
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has been done for frequencies higher than 500 Hz. The geometrical details of the QRD are given in Figure 1b.

The DG scenarios have been designed for a frequency range of interest from 500 to 2500 Hz. The QRDs represent

façade irregularities with a constant low sound absorption coefficient, while the beginning and the end of the streets

are simulated as completely absorbent openings. The calculations in DG are initiated with a broadband pressure

distribution and zero acoustic velocity.

(a)

0.03m

0.09m

0.16m
0.12m

0.66m

0.06m

(b)

Figure 1. a) Dimensions of the two-dimensional urban domains including the source position (black dot) and the

openings (red lines): upper domain straight, long street (LS), lower domain perpendicular intersection of two long

streets (LX). b) Geometrical detail of the two-dimensional QRD used at the boundaries of the scenarios to simulate

the façade’s irregularities.

The results of the absorption coefficient for random sound incidence αr, and the scattering and the diffusion coeffi-

cients (averaged value for all source positions dΨ) according to (7) for the used QRD diffuser are presented in Figure

2. These values were obtained from a numerical evaluation using the DG model.

0 500 1000 1500 2000 2500
Frequency [Hz]

0

0.2

0.4

0.6

0.8

1

d
 [-

]

(a)

0 500 1000 1500 2000 2500
Frequency Hz

0

0.2

0.4

0.6

0.8

1

s 
[-

]

(b)

0 500 1000 1500 2000 2500
Frequecy [Hz]

0

0.2

0.4

0.6

0.8

1

r [-
]

(c)

Figure 2. Results of the QRD used in this study for 1/1 (black big circles) and 1/3 (red small circles) octave bands: a)

diffusion coefficient dΨ, b) scattering coefficient s, and c) random absorption coefficient αr.
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4.1 Removing the direct sound and specular reflections

The nodal discontinuous Galerkin (DG) numerical time-domain wave-based method (6) was employed in this work

for solving the linearised Euler equations representing sound propagation in urban scenarios. The impulse responses

(IRs) of the acoustic solutions of DG are recorded at equally spaced multiple locations r in the domain. These

solutions represent the steady state condition when transformed to the frequency domain. The source and receivers

locations in the two-dimensional coordinate system are indicated as rs = [xs,ys] and rnr = [xnr ,ynr ], respectively. The

time step is computed depending on the maximum frequency of interest fmax according to Δt < 1/(2.5 fmax) [s]. The

end of the time signals is tapered by a single-sided Gaussian window with a length ≈ 6 ms to avoid Gibbs effects. As

by definition, the diffusion equation does not include the coherent part of the sound field, the beginning of the IRs is

tapered by windowing the first part of the IRs. The window length is constructed by computing the number of time

steps (n1a) the direct sound takes to arrive to every receiver location in the case of receivers located in the line-of-sight

from the source. The cases where the receiver location is not in the line-of sight from the source, the number of time

steps until the first arrival (n1a) has been computed from the distance between the source and the closest diffracted

corner, plus the distance from that corner to the receiver position. The windowing function Γw is constructed using

Equation 9, where the total number of recorded time steps is denoted by Nt with indexes nt = (1,2, . . . ,Nt) and αw = 7

and βw = 4 are constants controlling the shape of the exponential function. The length of the exponential window Nw
is fixed in this work (NwΔt ≈ 2.4 ms) to remove the direct sound and assuming that all reflections are non-coherent

for frequencies above 500 Hz, according to the design of the QRD.

Γw =

⎧⎪⎨
⎪⎩

0 for 1 ≤ nt ≤ n1a,

e−αwlog(10)
(

nt−Nw
Nw

)2βw

for n1a < nt ≤ n1a +Nw,
1 for n1a +Nw < nt ≤ Nt .

(9)

5 RESULTS OF THE WB SCENARIOS AND CALCULATION OF D
In this section, the results of the acoustic intensity, the energy density and the gradient of the energy density are

presented as calculated from the solutions of the WB method. Additionally, the calculated diffusion coefficients are

shown for the computed cases, LS and LX. The set of graphs shown in Figure 3 presents the results of w, Jx, ∇xw and

Dx of both scenarios. Excluded from this initial analysis the areas in the proximity of the source and street openings.

The one-dimensional solutions of the LS case in Figure 3 show an increase of the diffusion coefficient along the street,

while the energy density resembles an exponential decay as the distance from the source increases. This is in line

with the diffusion coefficients reported by Visentin (5) for long rooms. As a consequence of the decay of the energy

density, the gradient smoothly approaches zero as the slope of the energy decay decreases (see Figures 3a and 3c).

The intensity follows a similar exponential pattern as the energy density, smoothly decaying with distance from the

source as shown in 3b. Close to the right end of the main streets, there is a predominant direction of the intensity, as

shown in Figure 4. However, in this area there is a drop of the value of the diffusion coefficients that can be explained

due to the fact that the back-scattering in nearby areas of the openings is highly reduced. Moreover, the intensity field

around the source location is not presenting a predominant direction, as shown in Figure 4, that can be additionally

observed by the change of sign of Jx in Figure 3b. In the same area, the energy density presents its maximum value,

decaying towards both openings (see the area around the source location in Figure 3a). Overall, it can be concluded

that the openings of the streets affect the results in their proximity, questioning the validity of the methodology for

computing the diffusion coefficients in these areas.

In the LX scenario, the energy density is distributed along the main street, but part of the energy is distributed to the

side streets as shown in Figure 4b. The flow of energy occurs from the source towards the ends of the main and side

streets. In this scenario, the results of the acoustic variables (w, J, ∇w and D) are presented in Figures 3 and 5, for

the main and side streets, respectively. Each graph includes red dotted vertical lines indicating the position of the

crossing street. Of particular interest in the main horizontal street is the analysis of the intensity field direction around

the crossing area that can be observed in Figure 4b. The energy density presented in Figure 3a for this scenario is
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Figure 3. Results of the LS scenario (grey solid line) and the main street of the LX scenario (black broken line). a)

w, b) Jx, c) ∇xw and d) Dx. The red dotted vertical lines represent the position of the crossing street (only for the LX

scenario).
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Figure 4. Direction of the acoustic intensity field of the street scenarios: a) LS and b) LX.
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Figure 5. Results of the two-dimensional cross street of the intersection model (LX). a) w, b) Jx, c) ∇xw and d) Dx.
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smoothly decaying until the crossing area where a more significant drop occurs, corresponding with the distribution

of the energy towards the side streets. This can be observed as well in the results of Jx (see Figure 3b). Clearly, after

the crossing area, the energy density and the acoustic intensity decay at a slower rate than before the crossing. The

diffusion coefficient results present a clear drop in the main street right before the crossing and a sudden increase

after the crossing. In the cross street, the analysis is equivalent. The energy density is distributed from the crossing

to the side streets. Figure 4b shows how the acoustic intensity propagates with opposite directions in each side street

and Figure 5b shows how the intensity distribution is approximately mirror-symmetric. The coefficients present an

increase with distance when entering the side streets until the proximity of the openings, as shown in Figure 5d.

6 CONCLUSION
A novel methodology for the calculation of diffusion coefficients for the diffusion equation has been proposed for

urban applications, based on the solutions of a wave-based method. The approach is based on locally computing the

diffusion coefficients as the proportionality factor between the acoustic intensity and the gradient of the sound energy

density given by Fick’s first law of diffusion. The variations per mean free path of w, J, and thus D, must be small and

therefore, efforts of the proposed methodology are oriented towards reducing the fluctuations of the solutions when

using a full WB model. The presented approach has been employed for two-dimensional2 scenarios composed of

rectangular domains where one dimension is much bigger than the other. The method has been applied to a straight,

long street and to a more complex urban case, the intersection of two perpendicular long streets. The proposed

methodology to compute the diffusion coefficients has been proven to be a valid approach in areas where the sound

field is smoothly decaying in a predominant direction. However, the method fails when the gradient of the energy

density approaches zero. These cases are associated with areas of the domain where there is not a predominant and

unique direction of the energy flow as near the source, openings or the narrow direction of the streets. The diffusion

coefficients are found to be non-homogeneous, equivalently to the findings for long room cases (5).
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