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ABSTRACT 
Many species in diverse taxonomic groups, including rodents, bats, and insects, communicate with complex 
ultrasonic vocalizations (USVs) (>20 kHz). Two main components of processing and analyzing USV 
recordings include detection and classification of syllable types. Recently we developed an efficient 
algorithm for detecting mouse USVs (Automatic Mouse Ultrasound Detector (A-MUD)). The main 
challenge is detecting USVs under conditions with a low signal-to-noise ratio, while minimizing rates of 
false positives (FP). Mice produce many short USVs (< 10 millisecond) that inflate FPs. We aimed to 
improve the detection of mouse USVs with A-MUD by classifying vocalizations into three discrete syllable 
types (with 0, 1, or ≥2 frequency-jumps) or FP. Supervised Convolutional Neural Networks (CNNs) were fed 
by 2D Gammatone Spectrograms (GSs) adapted to the frequency range of mice. Evaluation of performance 
shows that CNNs yielded an overall accuracy of 95±1.2% and macro-F1 score of 90±2.7%. In contrast, 
multilayer feed-forward neural networks fed by vectorized spectrograms provided an overall accuracy of 
only 85.4±1.9% and macro-F1 score of 75.4±2.9%, and therefore, the chosen CNNs outperformed this 
conventional classification method. 
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1. INTRODUCTION 
Mice like other taxonomic groups use ultrasonic vocalizations (USVs) (20-120 kHz) to 

communicate. USVs are emitted by mouse pups when they are in distress or away from their mother, 
and by adults when they socially interact (1, 2). The function of USVs in house mice may be to convey 
information about a signaler's identity (species, sex, age), sexual motivation, health and social status 
(3-7). USVs are increasingly used for investigating the genetic basis of autism and human speech 
disorders (8, 9). Analyzing USV data is extremely time-consuming, however, and better methods for 
automatic detection and classification of USVs are needed.  

There are commercial and non-commercial software tools for automatic detection of USVs 
available, including the following: MUPET (10), mouse song analyzer (11), Avisoft SASLab Pro 
(Version 4.2, Avisoft Bioacoustics, Berlin, Germany) and SONOTRACK (Version 2.2.4, Metris, 
Netherlands). Their performance is acceptable for recordings of mice having a high signal-to-noise 
ratio (SNR), but noisy recordings, such as vocalizations emitted during sexual or social interactions, 
are problematic. We developed an automatic method, the mouse ultrasound detector (A-MUD) 
(version 1.0), which has very good performance under such conditions (12). Our most recent version 
(3.2) (13) has an even lower false negative rate (FNR), caused by missing short syllables (≤ 10 
milliseconds) and faint (low amplitude) USVs; however, it has a higher false positive rate (FPR). This 
is an inescapable tradeoff for any signal detection method, as noted by others (14), though we 
nevertheless aim to improve the performance.   

In the development of previous methods, the removal of FPs was conducted both manually (15, 16) 
and automatically (10, 14, 17). Automatic elimination of FPs can be accomplished with unsupervised 
and supervised approaches. Van Segbroeck et al. (10) implemented a K-means clustering algorithm 
(unsupervised approach) (18) in MUPET. They classified detected elements (i.e., USVs or FPs) into 
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100 classes and the user must select which class(es) represent FPs to be removed. K-means clustering 
allows low computational load (10), while it still leaves some FPs unidentified. Coffey et al. (14) also 
attempted to eliminate FPs by supervised trained convolutional neural networks (CNNs). Using a deep 
learning-based approach (19), spectrogram images have been first classified into two classes, FPs 
versus USVs, and then, the identified USVs are reclassified. Although this method has an acceptable 
level of accuracy, the stepwise elimination of FPs and classification USVs is time-consuming (20). 
Moreover, this method assumes that no FPs remain in the data after the first step, and it therefore 
considers no target class for FP in the second step. Our studies show that this assumption not always 
holds, and it may degrade the performance of the model. 

Methods for automatic classification of USV syllable types also employ both unsupervised (10, 21) 
and supervised (14) methods. In the supervised classification (22, 23), observations are manually 
labeled and represented as response variable to the model. Higher accuracy is secured when using this 
method rather than (unsupervised) clustering (24, 25). To the best of our knowledge, DeepSqueak is 
the only available software package that provides supervised classification of USVs using CNNs. The 
model is trained on a relatively high number of samples (56,000 USVs) acquired from the Mouse Tube 
dataset. This model categorizes inputs based on spectrogram images into 5 default classes including 
Split, Inverted U, Short Rise, Wave, and Step. Our examinations of DeepSqueak's performance 
revealed some deficiencies. First, as previously mentioned, FPs are not assigned with a target class, 
which may increase errors in classification. The selection of target classes is normally based on the 
importance of these classes in the behavioral studies of mice (25, 26). However, the authors of this 
method have not discussed the reason for choosing the aforementioned classes. In addition, the 
performance of DeepSqueak classification has not been compared with other models. Finally, CNNs 
used in DeepSqueak is developed on the high-SNR Mouse Tube data. Therefore, a full assessment of 
DeepSqueak is postponed until its application to high-noise data. 

The aims of the present study include the following: (1) classify USVs into four classes, FP, C2, C3, 
and no-jump (NJ), as the most considered classes in mice behavior studies, (2) use low-SNR data for 
training CNNs, and (3) evaluate the feasibility of using spectrogram images as the input for the 
classifier. The latter is considered as the replacement for vectorized images.  

2. DATA and METHOD 

2.1 Data 
Here, we used USV recordings of adult wild-derived house mice (Mus musculus musculus). Animal 

housing and weaning conditions have been previously described (12). A-MUD (version 3.2) is used for 
the detection of elements. Then, they were manually labeled into 4 classes: FP, C2 (one frequency 
jump), C3 (two or more jumps) and NJ (no jumps) (26, 27). For this study, we arbitrarily selected 1000 
members of the class NJ (out of 7000 members), 120 members from C2 and FP, and 75 members from 
C3. 

2.2 Method 
2.2.1 Preprocessing 

For image-based classification, data is given in the form of two-dimensional images (whether being 
an image of a flower or a 2D spectrogram) to a classifier. In the present study, these images were 
derived from the spectrograms of detected elements. Spectrogram computation consists of two steps: 
filtering and applying the short time Fourier transform (STFT) (28). Initially, the signal is passed 
through Chebyshev filter (29) (Type I, order 8, bandpass with corners of  = 30 kHz, and  = 
120 kHz) to extract the desired signal in the ultrasound range. In the second step, according to 
parameters already defined by A-MUD, spectrogram is produced via STFT. Having prepared the mice 
USVs spectrograms, they are postprocessed in two steps. First, for the sake of computational expense, 
following Van Segbroeck et al. (10), the Gammatone filters (30) are used to reduce the size of 
spectrogram array along the frequency axis. Because this filter is primarily defined for the human 
perception of sound )31( , here we adapted it to the frequency range of mice hearing using the filter 
specifications defined in MUPET. Secondly, the function maximum is applied to filtered spectrogram 
and floor noise (10-3). The output is logarithmically transformed and, then, smoothed by using auto 
regression moving-average filter (32) with order 1. The resulting smoothed spectrogram has a size of 
64*401(compare to the original size of 225*401) which is the number of frequency bins multiplied by 
number of time bins. Hereafter, it is called Gammatone spectrograms (GSs).  
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2.2.1 Classifier 
Here, we have compared the performance of two classifiers including CNNs and multilayer 

feed-forward neural networks (MFNNs). Although both techniques are categorized as being deep 
learning algorithm, the main difference is that the former is fed by 2D images while the latter normally 
uses vectorized images as input. Conceptually to preserve the relation of time and frequency, the first 
approach seems far more feasible in our setting. CNNs was first introduced by Fukushima (33) and 
developed by LeCun et al. (34). The successful performance of CNNs in categorizing images has been 
already documented in various fields of study including handwritten recognition (35), object 
discrimination (36), categorization of birds species (37) and identification of environmental sound 
sources (38). MFNNs also performed well in audio analysis disciplines such as marmosets’ 
vocalizations’ classification (39), sound event classification (40), and speech recognition (41). This 
study investigates the use of CNNs, fed by 2D images, for improving USVs analysis. It is inspired by 
the fact that MFNNs with vectorized inputs may lead to a poor classification (42).  

The architecture of MFNNs consists of 4 FC layers (each with 50 hidden neurons), each followed 
by a dropout layer (43) with a probability of 0.5, and the output FC layer with 4 neurons.  

For the development of CNNs, we have used the following structure: the input layer, 8 
convolutional layers (3*3) for extraction of features from images, each followed by an activation 
function of rectified linear unit (ReLU) (44) (set by default parameters), two non-consecutive layers of 
max pooling (2*2) (45) for reduce the size of the input, and two FC layers for classification. The 
architecture of both models is selected based on trial and error.  

To optimize the loss function of categorical cross-entropy in CNNs and MFNNs, Adam algorithm is 
used (46). This loss function computes the dissimilarity between the distribution of predictions (after 
applying the non-linear softmax function) and of the true data using the following equation: 

,  (1) 
Where  and  are the true and estimated distributions of data,  is the softmax function 

and C is number of classes. In order to prevent overfitting, augmentation )36(  is applied to 
the training data. To solve the problem of imbalanced number of class members, we used the 
incorporation of classes weight in the loss function )47( . These weights are obtained by the inverse of 
the number of class members. Finally, 80% of the observations (per class) and their respective features 
are used to train the classifiers. The classification is performed on 5 folds of dataset. 

3. RESULTS 
In this section we will discuss the class separability using unsupervised t -distributed stochastic 

neighbor embedding (t-SNE) )48( . Then, we will present the performance analysis of CNNs and 
MFNNSs. 

3.1 Specifications of Classes  
In Figure 1-a, GSs of 5 randomly selected members from each studied class is shown. The classes 

C2 and C3 are both composed of 2 or more notes (defined as basic acoustic unit which are formed by 
a single continuous sound with gradual variations in fundamental frequency (49)). GSs of the class FP 
only contains noise. Members of NJ (row 3) do not contain jumps, but the overall shape of some 
examples is similar to some jump-contained USVs or the class FP. Hence, the 3D visualization of 
t-SNE (Figure 1-b) shows FP and C2 members overlapped NJ members. But the members of the 
classes C2, C3, and FP are located in a distinguishable distance. It is necessary to note that there is the 
possibility of the co-occurrence of each of the above USV classes members with background noise 
(row 2 column 1 and 4), or USVs might be faint (row 3 column 1), which in this study is not considered 
as a distinct class (e.g. class of noisy USVs).  
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Figure 1 – a) GSs of 5 randomly selected members of four studied classes and b) 3D visualization of t-SNE 

values. Classes are represented by color.  

3.2 Classifiers Performance 
The following table summarizes the performance of CNNs and MFNNs (derived from 5 folds) in 

classifying detected elements. 
 

Table 1 – The performance of CNNs and MFNNs in classifying detected elements into 4 classes. The values 

are means ± one standard deviation. Please note that overall metrics are unweighted average of classwise 

metrics. 

Area under the ROC curve (AUC) )50(  

(classwise) 
Overall metrics 

Models 
FP NJ C3 C2 AUC F1 (%) 

Accuracy 

(%) 

0.95±0.02 0.94±0.01 0.94±0.03 0.91±.04 0.94±0.01 90±2.7 95±1.2 CNNs 
0.85±0.03 0.81±0.04 0.77±0.1 0.8±0.06 0.81±0.05 75.4±2.9 85. 4±1.9 MFNNs 

 
According to the standard metrics of accuracy, macro-F1 score, and the area under the ROC curve 

(AUC) )50( , CNNs gives much better results than MFNNs. Moreover, the variation of MFNNs 
performance metrics between classes is much higher than that of CNNs. For example, MFNNs resulted 
in the AUC of 0.85±0.03 in the class FP and 0.77±0.1 in the class C3, whereas the CNNs equals to 
0.95±0.02 and 0.94±0.03, respectively. Considering the outperformance of CNNs, the rest of the paper 
is allotted to the detail evaluation of this algorithm.  

In Figure 2, CNNs performance is evaluated based on ROC (Figure 2– a) and normalized confusion 
matrix (Figure 2– b). In addition, cases that are erroneously classified by CNNs are depicted in Figure 
2– c. In Figure 2 – a, the ROC curves are accompanied with the AUC values in the legend. The higher 
AUC quantities (ROC closer to top left) show the greater ability of the model to separate the 
corresponding class from the others. According to this figure, the classes FP and C2 have the highest 
and the lowest separability, respectively. The reason for this can be found in Figure 1 – b, where the 
class FP (unlike the class C2) is located in high distance from other classes. In order to better 
understand the CNNs performance, the FPR of the model (those members off the diagonal axis) for 
each class is presented in Figure 2 – b. In this figure, the use of normalization (by rows) is used to 
eliminate the misleading effects of imbalanced classes on the model's performance metrics. 
Accordingly, the maximum within-group error refers to the misclassification of the class C2. Members 
of this class are mainly mistakenly predicted as C3 and NJ. The best result is  obtained for the class FP 
with a prediction accuracy of 100%. These results are most likely not affected by the number of class 
members. As the number of members is equal in three classes FPs, C2 and C3 for train and test. 

 

C2 

C3 

NJ 

FP 

a b 
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Figure 2 – a) ROC curve for each class and micro (weighted)- and macro- (unweighted) average of all classes. 

Micro average is weighted by the number of members. b) Normalized (by row) confusion matrix of CNNs, 

and c) all elements whose labels are mistakenly predicted by CNNs. The green and red labels represent the 

correct and false labels, respectively.  

 
In Figure 2 – c, examples of falsely classified members with their correct labels are shown. As 

expected, the NJ USVs, which mistakenly labeled as FP, have very close pattern to them. The probable 
cause of errors in identifying members of the classes NJ and C2 (which are classified as C3 or C2) can 
be attributed to the background noise. Finally, the classification error in the class C3 can be caused by 
the significant difference between GSs shown in Figure 2 – c (row 3 column 4) and the representative 
pattern of this class. 

4. CONCLUSION 
In this study, we used the image-based CNNs to improve the classification of detected elements 

from mice audio recordings. Target classes, which were selected based on their importance in the 
studies of mice behavior, are three classes of C2, C3, NJ and FP. The comparison of this method with 
MFNNs, fed by vectorized images, shows a much higher efficiency of CNNs. Further examinations of 
CNNs classification show that the background noise in USVs causes the misclassification of the 
classes NJ and C2. Additionally, error rate increases in cases where the pattern in a segment is different 
from the representative pattern of a class. This problem has been identified as the main origin of errors 
in the class C3. We suspect that the performance of CNNs can be improved by using more data, more 
efficient noise removal methods and implementing other CNNs architectures. In the future, we will 
compare the results of this model with DeepSqueak, as the state-of-the-art model for USVs 
classification. 
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