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Abstract
In the context of audio signal processing for microphone-equipped robots, the robot’s self-created movement
noise, so-called ego-noise, is a crucial problem. It massively corrupts the microphone signal and degrades
the robot’s capability to interact intuitively with its environment. Therefore, ego-noise suppression is a key
processing step in robot audition, which is commonly addressed using learning-based dictionary or template
approaches.
In this contribution, we introduce a deep-learning framework called Deep Clustering (DC) for ego-noise sup-
pression in a single microphone channel, which was initially introduced by Hershey et al. for the task of speech
separation. In DC, a bi-directional recurrent neural network is trained to embed each time-frequency bin of a
mixture, containing ego-noise and speech, to a higher dimensional domain under the constraint that embeddings
of bins dominated by ego-noise have maximal distance to those dominated by speech. During testing, clustering
is performed in the embedding domain to assign each time-frequency bin uniquely to one of the two signal
components and thereby allowing the estimation of both.
We demonstrate that DC allows a significant reduction of ego-noise in the reconstructed signal. Additionally,
we investigate the influence of the embedding size and the hidden layer size on the suppression performance.
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1 INTRODUCTION
Robot audition, i.e., the ability of a robot to understand a user’s speech signal and behave accordingly, highly
depends on the quality of the recording. Therefore, many algorithms have been developed to reduce signal dis-
tortion by ambient or background noise or interference from other speakers [1]. In this context and specifically
for humanoïd robots, self-created noise, so-called ego-noise, plays a severe role. It results from rotating joints
as well as the moving parts of the robot’s body and usually seriously corrupts the robot’s recordings. There-
fore, appropriate ego-noise reduction mechanisms are required. This task is particularly challenging since the
microphones of the robot are mounted very close to the motors and joints, which results in ego-noise that is
often louder than the signal of interest. Moreover, ego-noise is non-stationary as the robot moves with varying
speed and accelerations, which further complicates the removal from the recording. However, ego-noise exhbits
a pronounced spectral structure, which can be learnt.
So far, a variety of methods to remove ego-noise from recordings has been proposed. Beside approaches which
employ an internal microphone to record a reference signal for ego-noise reduction [2, 3], there are many
approaches that use pre-learnt ego-noise templates from which the most suitable can be chosen to reduce the
ego-noise in the recording. Based on the assumption that a certain movement leads to a similar ego-noise
pattern, motor data collected by proprioceptors mounted to the joints of the robot can be used to identify
matching templates within a database [4, 5, 6, 7, 8].
Other approaches are based on dictionary learning where the spectral characteristics of ego-noise are modelled
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Figure 1. Illustration of DC. Each time-frequency bin of the spectrogram XXX (left) is mapped to a D-dimensional
embedding domain (center), where the embeddings belonging to the same source form clusters (right).

by a combination of a limited number of prototype signals stored in a dictionary. A prominent single-channel
dictionary learning approach is nonnegative matrix factorization (NMF) [9], which was successfully applied
to reduce ego-noise for single- [10] and multichannel recordings [11]. An alternative multichannel dictionary
approach has been presented in [12] which was combined with motor data of the robot in [13, 14].
In this paper, we investigate Deep Clustering (DC) [15], a neural network-based approach originally proposed
for source separation, for ego-noise suppression. We first introduce DC as a general framework for source sep-
aration (Sec. 2.1), followed by describing the resulting modifications if DC is applied for ego-noise suppression
(Sec. 2.2). In Sec. 3, we demonstrate that DC is an appropriate method for this task and show that the model
complexity can be reduced significantly.

2 DEEP CLUSTERING
2.1 General description
DC as introduced by Hershey et al. in 2016 [15] is a deep learning-based source separation technique, which
identifies the dominant source in each time-frequency bin of the input mixture. This knowledge can be trans-
ferred into a binary mask, which can be used to separate the sources in the time-frequency domain. The
fundamental assumption for DC is that the signal components of the input mixture have to be strictly separable
in the time-frequency domain, i.e., each bin is dominated by exactly one source. This property is referred to as
W-disjoint orthogonality [16].
We consider a discrete-time single-channel mixture at time instant k comprising C sources

x[k] = x1[k]+ · · ·+ xC[k], (1)

which shall be separated from each other.
During preprocessing, x[k] is transformed into its spectrogram representation XXX ∈ RF×T

≥0 with F frequency bins
and T time bins by computing the logarithmic magnitude of its Short-Time Fourier Transform. For further
processing, XXX is divided into short, half-overlapping sequences of size F×Tin. The fundamental idea of DC is
to represent each time-frequency bin X f t by a D-dimensional embedding

vvv f t = f (X f t) ∈ RD with
∣∣vvv f t

∣∣2 = 1, (2)

where f (·) denotes the mapping function (cf. Fig. 1). D denotes the dimension of the embedding space and is
typically chosen significantly greater than 1.

Furthermore, each X f t is associated with a one-hot vector yyy f t =
[
y f t,1, . . . ,y f t,C

]T with y f t,c ∈ {0,1}, c= 1, . . . ,C,
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where y f t,c = 1 if X f t belongs to source c and y f t,c = 0 otherwise. As a consequence we have yyyT
f tyyy f ′t ′ = 1 if

and only if X f t and X f ′t ′ belong to the same source.
The objective of DC is to find a mapping function f (·) which maximizes the affinity vvvT

f tvvv f ′t ′ between two
embedding vectors vvv f t and vvv f ′t ′ if both represent the same source. Analogously, the difference between vvvT

f tvvv f ′t ′

and yyyT
f tyyy f ′t ′ can be minimized leading to the cost function

CYYY (VVV ) = ∑
f ,t, f ′,t ′

(vvvT
f tvvv f ′t ′ − yyyT

f tyyy f ′t ′)
2 = ‖VVVVVV T −YYYYYY T‖2

F , (3)

where YYY = [yyy11, . . . ,yyyFT ]
T is a binary matrix of dimension FT ×C and VVV = [vvv11, . . . ,vvvFT ]

T ∈ RFT×D.
For a mapping minimizing Eq. 3, embedding vectors associated to the same source form unique clusters in VVV .
This is exemplarily shown in Fig. 1 (right).
The mapping f (·) is found by training a deep neural network, which consists of two bi-directional long short-
term memory (BLSTM) layers, a linear layer and a normalization layer. BLSTMs evolved from the long short-
term memory (LSTM) implementation [17] of recurrent neural networks, which are widely employed for time-
series processing. A good overview can be found in [18]. BLSTMs process the input series in both directions,
i.e., from sample 1 to sample Tin and vice versa. In the case of DC, the network is therefore able to take the
entire context of an input sample into account. The subsequent linear layer reshapes the output of the BLSTM
to the required dimensionality of the embeddings. Finally, the normalization layer ensures that the embeddings
are of unit-norm, cf. Eq. 2.
During testing, every time-frequency bin of a previously unseen mixture is processed by the neural network and
the resulting embeddings are subsequently clustered using an appropriate algorithm, e.g., K-means [19]. The
clustering algorithm can be initialized with suitable cluster centers based on the training data, which allow to
associate each cluster, and hence each bin within that cluster, to one of the C sources. This can be repre-
sented by a binary mask MMMc of dimension F×T which is 1 for each time-frequency bin that was identified as
belonging to source c.
Finally, an estimate for the c-th source is given by

X̂XXc = MMMc�XXX (4)

where � denotes point-wise multiplication. Fig. 2 summarizes the DC algorithm. The estimated spectrogram
X̂XXc is then transformed back into the time domain to give an estimate of the clean source signal x̂c.
A challenge in source separation is the so-called permutation problem, which describes the issue of associating
the estimated sequences with the sources. This can exemplarily be addressed by defining and evaluating a cost
function for each possible source permutation, e.g., [20]. The cost function yielding the smallest loss indicates
the estimated source ordering. However, this approach is computationally expensive since several cost functions
need to be evaluated. In DC, the permutation problem is implicitly avoided by including the ordering decision
in the clustering step through the initialization of the cluster centers.

2.2 DC for ego-noise suppression
For the specific problem of ego-noise suppression, C should intuitively be chosen to 2 as the considered mixture
comprises a desired speech signal component and the interfering ego-noise component. However, there may be
bins containing neither ego-noise nor speech, which we refer to as silence bins. Therefore, we propose to use
a third class, i.e., C = 3.
Since ego-noise exhibits broadband characteristics, it overlaps with speech in the spectral domain such that the
W-disjoint orthogonality assumption is violated. Therefore, separating ego-noise and speech can be assumed
to be challenging. On the other hand, ego-noise exhibits pronounced spectral structure of limited complexity.
Consequently, the main focus of the experimental study next to the proof of concept will lie on evaluating the
required model complexity, e.g., the embedding size D and the network architecture.
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Figure 2. Detailed chart of the Deep Clustering framework.

3 EXPERIMENTS
In the following, we present our experiments with DC for ego-noise suppression. This includes the data prepa-
ration (Sec. 3.1), the changes to the standard DC setup for our experiments (Sec. 3.2) and the quality measures
we used for performance assessment (Sec. 3.3). Finally, we discuss the results in Sec. 3.4.

3.1 Data
For our experiments, we separately recorded 15 min of ego-noise and speech with a NAO™ H25 humanoid
robot. We recorded ego-noise of a waving movement of the right arm, including all six joints of that arm.
The speech signal was played back by a loudspeaker positioned at 1 m distance from the robot at a height of
1 m, which played 500 utterances from the GRID corpus [21]. The GRID corpus is a multi-talker database,
consisting of short utterances (“place blue at F 9 now”). 11 min are used for training of the neural network and
2 min each for validation and testing. The validation data is used to adjust the hyperparameters of the network
and the test data is used to evaluate the performance of the final DC setup.
To construct yyy f t , each bin is assigned to speech or ego-noise by comparing the respective energy levels of both
components. If its magnitude (energy) is below a certain threshold, the bin is defined as representing silence.
The threshold is set to −40 dB of the maximum magnitude of the input. Experimental evaluation revealed that
the introduction of the third class simplifies the training of the network and the clustering process, however for
the reconstruction of the time-domain signal we merge the speech and the silence class.

3.2 Network architecture
Regarding the neural network, we make two major changes compared to [15]: we omit an additional sigmoid
layer before the normalization and we use the more sophisticated Adam optimizer [22] instead of the nor-
mal stochastic gradient descent optimizer [23]. Both changes are due to experimental results showing that the
original choices do not perform well for our version of DC.
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Table 1. Performance of different network configurations. The learning rate for all networks was 1.51 × 10−3.
tanh activation was used for all hidden units. The testing input mixture had an SDR and SIR of
−5.63(±1.14) dB.

Configuration Training time Training Training Validation SDR SIR
# nhidden D h:min steps cost ×106 accuracy in % in dB in dB

1 600 40 1:24 2001 9.5 96.64 88.40 5.48(±2.19) 17.79(±3.65)

2 100 40 4:33 9775 14.7 92.41 89.30 5.32(±2.56) 17.07(±4.34)
3 200 40 1:57 4705 12.9 94.42 89.80 5.31(±2.63) 16.44(±4.84)
4 300 40 1:19 3301 11.7 95.26 89.25 5.24(±2.51) 16.90(±4.38)
5 400 40 1:17 2625 10.9 95.75 88.75 5.40(±2.40) 17.62(±4.15)
6 500 40 1:19 2209 10.8 95.88 88.67 5.48(±2.36) 17.39(±4.06)
7 700 40 1:13 2625 8.9 96.95 88.45 5.17(±2.61) 17.03(±4.52)

8 600 5 1:10 2209 10.5 95.97 89.57 5.42(±2.25) 16.84(±4.12)
9 600 10 - 2053 9.6 96.55 89.34 5.23(±2.50) 16.71(±4.62)
10 600 20 1:12 2001 9.5 96.47 88.88 5.39(±2.29) 17.27(±3.70)
11 600 30 1:17 2001 9.4 96.66 88.70 5.51(±2.44) 17.54(±4.35)
12 600 50 1:57 2573 9.8 96.56 88.60 5.44(±2.41) 17.41(±3.97)

13 200 5 1:32 5966 13.8 94.04 89.98 5.07(±2.75) 15.73(±4.77)
14 300 5 0:51 3467 13.4 94.48 89.96 5.14(±2.65) 16.09(±4.73)
15 700 30 2:16 1754 9.0 97.02 88.09 5.28(±2.52) 17.29(±4.29)

3.3 Quality measures
To quantify the overall performance of DC, we provide the accuracy of the clustering, which is given by the
percentage of bins that have been associated correctly with the dominant source. The clustering accuracy can
be computed based on the training data or the validation data. As DC should work on previously unseen
data, the validation accuracy is the more important one. We furthermore measure the performance of ego-noise
suppression in terms of the Signal-to-Distortion Ratio (SDR) and the Signal-to-Interference Ratio (SIR) of the
estimated time-domain speech signals [24] of the test data. While SIR measures the overall noise suppression,
SDR also incorporates information on the distortion of the desired speech signal by the suppression algorithm.
SDR and SIR are averaged over all noisy utterances, i.e., we excluded utterances that did not contain ego-noise.
Beside the mean, we compute the standard deviation of SDR and SIR. Lastly, we provide the final training cost,
which is given by the value of the cost function based on training data after the optimization is completed. All
of these measures are listed in Table 1 together with the respective values for various network configurations.
They will be explained in more detail in Sec. 3.4.

3.4 Discussion
We first give a proof-of-concept of our proposed method and show that DC can be employed for ego-noise
suppression. For this, we adopted the parameter settings and network architecture from [15], except for the
learning rate, which governs the speed of the gradient descent of the optimizer. It was chosen empirically as
1.51× 10−3. The baseline results are given in Table 1, Configuration (Config.) 1. It can be seen that this
baseline DC setup achieves an increase of more than 11 dB in SDR and of more than 23 dB in SIR. The
validation accuracy is already rather high with 88.40%. This indicates that DC is very well able to discriminate
ego-noise from speech.
It can be expected that the hyperparameters are not yet ideal since we consider a different application than
[15]. The most crucial parameter changes regarding the model complexity compared to the original proposal
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Figure 3. Spectrogram of an example mixture of ego-noise and speech (top). Oracle assignment (center) of each
time-frequency bin to ego-noise (green), speech (orange) and silence (black), cf. Sec. 2.2. DC-based estimation
of assignments (bottom).

in [15] concern the dimensionality of the embeddings D and the number of hidden units nhidden in the two
BLSTM layers. To determine the most suitable value, we varied both parameters independently, starting from
the values given in [15], and chose the values that led to the best results. We did not adapt the learning rate
to the modified network setups. Table 1 summarizes the training and validation results for several network
configurations (Config. 2-15). The training cost mostly correlates with the clustering accuracy for the training
data. Note that the initial training cost of the network after the first optimization step was around 70×106 for
all of our configurations and that training achieved a significant reduction of the cost.
Interestingly, an increase of the validation accuracy can be observed when the number of hidden units is de-
creased. However, this also leads to an increase in training time, which could have various reasons. Possibly
the network complexity with nhidden = 100 is too low to accommodate all changes in the training data or the
learning rate, which was initially optimized for a network with nhidden = 600, could be disadvantageous for
the training of a network with less parameters. Nevertheless, the best validation accuracy was achieved for
nhidden = 200 (Config. 3). For nhidden = 300 (Config. 4) the validation accuracy decreases by 0.5% compared to
the accuracy achieved with Config. 3, but training could be accelerated by more than 25%. When decreasing
the dimensionality of the embedding, the validation accuracy increases slightly and the training time decreases.
Hence, from a validation accuracy perspective, hyperparameter settings of D = 5 and nhidden = 200 would be
the best choice. When the training time is also taken into account, nhidden = 300 is a good compromise. The
combined impact of the two parameters was tested in Config. 13 and 14, where Config. 14 requires a drasti-
cally shorter training time. A detailed listing of all parameters of this network can be found in Table 2. As
an example, Fig. 3 shows a test mixture, the ideal mask for source separation and the mask estimated by a
network using Config. 14.
For Config. 15 the hyperparameter setting was chosen based on the configurations that perform best with respect
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Table 2. Parameter settings for Config. 14.

Parameter Value

learning rate 0.00151
number of BLSTM layers 2
hidden units activation tanh
number of time frames in input sequence Tin 100
number of hidden units nhidden 300
embedding size D 5

to the training accuracy, i.e., D = 30 and nhidden = 700. This configuration performs very well in terms of
training accuracy but worse than the baseline in terms of validation accuracy.
SDR and SIR for the test data do not correlate with the validation accuracy. This is surprising because a higher
validation accuracy should indicate a better separation of ego-noise and speech on unseen data, which should
be reflected by a higher SDR and SIR also for the test data. This may be due to the violated W-disjoint
orthogonality assumption (cf. Sec. 2.2). This phenomenon requires further investigation.
In summary, the evaluation shows that a reduction of the embedding size from D = 40 to D = 5 and a reduction
of the number of hidden units in the BLSTM layer from nhidden = 600 to nhidden = 300 is possible without a
significant loss in performance. The validation accuracy even increases by over 1.5%. By using less parameters,
training time could be decreased by 40%.

4 CONCLUSION
We could show that DC, which was originally proposed for separation of two human speakers, is also applicable
for ego-noise suppression in robot audition. The model complexity can be reduced drastically compared to [15].
Further work will include a more extensive testing of DC for ego-noise of additional movements of the robot.
Beside this, alternative reconstruction methods, e.g., using continuous masks, must be investigated to minimize
the signal distortion caused by the violation of the W-disjoint orthogonality.
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