
 
PROCEEDINGS of the  
23rd International Congress on Acoustics  
 
9 to 13 September 2019 in Aachen, Germany 

 
 

 

A review of regression analysis methods: Establishing the 
quantitative relationships between subjective soundscape 

assessment and multiple factors 

Ming YANG1 
1 HEAD Genuit Foundation, Germany 

ABSTRACT 
Soundscape research has long been exploring factors/indicators that would impact human perception, 
emotional assessment, behaviour, etc. Since soundscape is intrinsically a complex system, a wide variety of 
factors have been suggested by intensive studies and also ISO/TS 12913-2 standard, ranging from acoustics, 
psychoacoustics, sound source composition, to demographics, and other personal/social/cultural factors. To 
examine subsequently the quantitative relationships between such factors and impacts/effects of soundscape, 
data statistical methods are essential. A wide range of statistical methods have been commonly used in 
soundscape studies corresponding to different specific research tasks, e.g. correlation analysis, analysis of 
variance, factor analysis and cluster analysis. While soundscape is affected by not only any single factor but 
multiple factors simultaneously and interactively, this paper focuses on a statistical method, regression 
analysis, that can investigate multiple variables to study the relationships and predict soundscape effects from 
multiple possible factors. This paper provides a brief review of a set of regression analysis methods, which 
are used for analysing different types of variables, e.g. continuous, ordinal and nominal. It then exemplifies 
the methods with a number of regression models from previous soundscape studies, particularly on 
subjective soundscape assessments (namely soundscape descriptors, e.g. pleasantness, satisfaction, and 
comfort), which is a crucial part in soundscape research. 
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1. INTRODUCTION 
Soundscape research has suggested that sound environments have impacts on human perception, 

cognition, emotion, behaviour, health and well-being, etc. (1). Soundscape studies investigated such 
impacts/effects due to different sound environments (2). For example, a large number of soundscape 
studies focused on people’s subjective perceptual and emotional responses/assessments of sound 
environments, such as pleasantness, satisfaction, and comfort, which were defined as soundscape 
descriptors in ISO/TS 12913-2 standard (3), and formed a substantial part of soundscape research. 

The effects of sound environments would be caused by a wide variety of environmental factors, as 
well as human factors that might explain the individual differences in responses. The factors, explored 
by previous soundscape studies and suggested by ISO/TS 12913-2 standard (3), include acoustic and 
psychoacoustic indicators (e.g. equivalent sound pressure level LAeq and LCeq, percentage 
exceedance levels LA5 and LA95, psychoacoustic loudness, sharpness, tonality, roughness, and 
fluctuation strength) (4), sound source compositions, visual factors of environment, demographic 
factors (e.g. age and gender) and other personal/social/cultural factors.  

Soundscape research attempts to establish the relationships between the soundscape effects and 
factors, to study the influences of the factors on various soundscape effects, or to predict soundscape 
effects/responses from the factors (e.g. use indicators to predict soundscape descriptors). To achieve 
these in a quantitative way, data statistical methods are essential. A wide range of statistical methods 
have been used in soundscape studies according to different specific research tasks, e.g. correlation 
analysis, analysis of variance, factor analysis and cluster analysis. Since soundscape is intrinsically a 
complex system, effects of sound environments are caused by not only any single factor but multiple 
factors simultaneously and interactively. To study such relationships, statistical methods that can deal 
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with multiple variables need to be used.  
Among the statistical methods or machine learning methods that can investigate multiple variables, 

e.g. regression analysis, fuzzy logic model and artificial neural network, this paper focuses on 
regression analysis which have been commonly used in soundscape studies. The following of this 
paper firstly discusses the types of variables (for both impacts and factors), and then provides a brief 
review of the regression methods for analysing the different types of variables. Finally, it exemplifies 
the methods with a number of regression models of subjective soundscape assessments, namely 
soundscape descriptors, from previous soundscape studies.  

2. SOUNDSCAPE VARIABLES (E.G. DESCRIPTORS AND INDICATORS) 
In statistics, a variable is something that varies between individuals or items. All the soundscape 

impacts and factors can be variables. The variables to be studied or predicted by other variables are 
called dependent variables, frequently the soundscape impacts or soundscape descriptors. The 
variables used as factors to predict the dependent variables are called independent variables, 
frequently the acoustic and psychoacoustic indicators or other soundscape descriptors. Statistical 
methods attempt to analyse the relationships between variables or the effects of independent variables 
on dependent variables. 

There are several types of variables, in general categorical and numeric. Categorical variables are 
also known as discrete or qualitative variables. Categorical variables can be further categorised as 
either binary, nominal, or ordinal. Binary or dichotomous variables are variables which have only two 
categories or levels, such as true/false, yes/no (coded by an indicator variable 1/0). Nominal variables 
are variables that have two or more categories, but which do not have an intrinsic order. 
Ordinal variables are variables that have two or more categories just like nominal variables only the 
categories can also be ordered or ranked. Numeric variables are also known as quantitative variables, 
and are either discrete or continuous. Discrete variables can take only a distinct number of values, 
often integers for such as count. Continuous variables can take any real value number within a certain 
range, either interval or ratio. There are overlaps between the different types of variable, e.g. there 
may be dispute about whether an integer variable is discrete numeric or ordinal. In addition, variables 
can sometimes be deliberately rearranged from one type to another, e.g. age (continuous variable) can 
be changed to age group (ordinal variable) (5). 

Table 1 gives some examples of the types of variables used in soundscape research. It is worth 
noting that in some cases, variables can be treated as different types. The choice of the type of a 
variable somehow depends on the case. 

Table 1 – Examples of variable types in soundscape research 

  Continuous  Categorical  

  Interval/ratio Binary Nominal Ordinal 

Soundscape 

descriptors (e.g. 

by semantic 

differential) 

11-point / 7- point •     

5-point    •  

Acoustic and 

psychoacoustic 

indicators 

LAeq / LCeq / LA5 / LA95 / 

loudness/ sharpness / tonality / 

roughness / fluctuation strength 

•     

Sound source 

compositions 

Whether a source present or not  •    

Perceived loudness of a source    •  

Demographic 

factors 

Age group    •  

Gender   •    

Profession   •   
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3. STATISTICAL METHODS: REGRESSION ANALYSIS 
Regression analysis is a set of statistical methods that estimate the relationship between dependent 

variables (Y) and independent variables (X). It produces a function of one or more independent 
variables (with the parameters) called the regression function or regression model, to estimate the 
dependent variable(s). Regression analysis can be used for indicating the effects of independent 
variables on dependent variables, finding the causal relationship between the variables, and predicting 
the dependent variables given the independent variables. Regression analysis is one of the 
fundamental algorithms in the field of machine learning (6). 

The following describes a number of regression methods that have been or would be used in 
soundscape research, according to the number and type of variables.  

3.1 Linear Regression 
Linear regression is one of the most widely used regression analysis in practical applications. 

Linear regression specifies that the dependent variable is a linear combination of the parameters (but 
need not be linear in the independent variables). The case of one independent variable is called simple 
linear regression. When there are more than one independent variable or function of independent 
variable(s), it is called multiple linear regression. 

Linear regression attempts to establish a relationship between a dependent variable and one or more 
independent variables by fitting a linear equation (e.g. a straight line) to observed data. The equation 
is in the form Y=a+b*X, where a is the intercept (a constant term) and b is the slope of the line.   

The regression can be understood simply as finding the parameters of the equation that best fit the 
observed data. The most common method for calculating the best-fitting line for linear regression is 
the method of least squares. This method obtains parameter estimates by minimizing the sum of 
squared residuals of all data, where the residual is the difference between the predicted value of the 
dependent variable by the model and the true value of the dependent variable (6).  

In linear regression, the dependent variable is continuous, whereas independent variable(s) can 
be continuous or discrete, such as binary, nominal or ordinal. 

3.2 Logistic Regression 
Logistic regression (also called logit regression) is a regression analysis in its basic form used for 

predicting a binary dependent variable rather than a continuous dependent variable in linear regression. 
Logistic regression calculates the probability of dependent variable being a case or being a non-case 
(7). 

As a generalized linear regression, what logistic regression does is to convert a binary dependent 
variable into a continuous one, and simulate the continuous one through a linear regression. To do this, 
logistic regression takes the logit function log[p/(1−p)], where p is the probability, (i.e. the logarithm 
of the odds (log-odds) where the odds are defined as the probability of being a case divided by the 
probability of being a non-case), to create a continuous criterion as a transformed version of the 
dependent variable, and then calculates the log-odds through a linear combination of one or more 
independent variables. After that, it converts the predicted value of the log-odds back into predicted 
probability via the inverse of the logit function, namely a logistic function (a sigmoid function), and 
outputs a value between zero and one. The regression parameters are usually estimated using 
maximum likelihood estimation. 

The logistic regression model itself simply calculates probability of output, and does not perform 
statistical classification, though by choosing a cut-off value of probability it can be used to make a 
classification.  

The binomial or binary logistic regression has extensions to more than two levels of the dependent 
variable: categorical outputs with more than two values are modelled by multinomial logistic 
regression, and if the multiple categories are ordered, by ordinal logistic regression.  

Like other forms of regression analysis, the independent variables of logistic regression can each be 
either continuous or categorical.  

3.3 Probit Regression 
Analogous to logistic regression, probit regression is also used to predict a binary dependent 

variable. However, probit regression and logistic regression use different link functions (sigmoid 
functions) to transform the binary dependent variable into a continuous latent variable. Instead of the 
logit function in logistic regression, probit regression uses an inverse standard normal distribution of 
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probability and models the latent variable as a linear combination of independent variables.  

3.4 Multivariate Regression 
Unlike the regression methods above which predict one dependent variable, multivariate regression 

is a regression method of modelling multiple dependent variables. It estimates the relationship of the 
independent variables with each dependent variable, in a similar way to regressing each dependent 
variable separately.  

4. PREDICTION MODELS OF SUBJECTIVE SOUNDSCAPE ASSESSMENTS 
Among various soundscape effects, such as perception, emotion, behaviour, health and well-being, 

a number of regression models of subjective perceptual/emotional assessments (as a substantial part in 
soundscape research) from previous soundscape studies are presented in this section, as application 
examples of the above regression analysis methods. 

4.1 Multiple Linear Regression Model 
4.1.1 Sound Quality in Terms of Pleasantness 

Ricciardi et al (8) used multiple linear regression to model the perceived sound quality 
(pleasantness) of soundscape from other perceptual variables. They collected perceptual data from a 
large number (3409) of participants in Paris via smartphone applications. When a participant visited a 
defined location at a defined time (with the GPS and time information recorded on the mobiles), the 
sound pressure levels were recorded and the participant answered a questionnaire covered question 
items in three categories based on 11-point bipolar semantic scales. The first category was related to 
the overall sound environment: Overall loudness (OL), which described the perceived sound level of 
the sound environment at the location, from “quiet” to “loud”; Liveliness (L), from “lifeless” to 
“lively”; Not enveloping (NE), from “enveloping” to “not enveloping”, Sound quality (SQ), from 
“unpleasant” to “pleasant”; Visual amenity (VA), from “unpleasant” to “pleasant”, and Familiarity (F), 
from “unfamiliar” to “familiar”. The second category described the emergent sound sources: perceived 
loudness of such as mopeds (PLM), cars (PLC), horns and sirens (PLH), trucks (PLT) and buses (PLB), 
from “low” to “high”. The third category of parameters dealt with the time of presence of sound 
sources such as traffic (T), voices (V), footsteps (F), birds (B), water (Wa) and wind (Wi), from “rarely 
present” to “continuously present”. 

They treated all the variables as continuous and built multiple linear regression models to predict 
the perceived SQ (sound quality) from the other perceptual variables. They obtained:  

SQ = 4.48 + 0.52VA – 0.27OL + 0.12V – 0.12T (R2
adj=0.52)  

The results showed that the predicted sound quality explained 52% of the variance of the real 
perceived sound quality. A correlation of 0.72 (r=0.72) was obtained between them.   

Without visual amenity, they obtained:  
SQ = 8.11 − 0.38OL − 0.14T + 0.20V + 0.15B (R2=0.34) 
Based on the regression method, they found the factors including perceived loudness of global 

sound environment and the presence time ratio of certain sound sources (traffic, voices, and birds) that 
did not emerge from the background noise significantly influenced the perceived sound quality, and 
could be used to predict sound quality in urban context to a certain extent according to the collected 
data. 

Later, using similar question items on 11-point bipolar semantic scales, Aumond et al (9) collected 
the subjective assessments from 37 participants (in four groups) during an urban soundwalk, at 
different locations along a walk path. Simultaneously, instantaneous 1/3-octave band sound levels and 
audio signals were recorded. 

Again, they performed multiple linear regression (with stepwise optimization) to model the 
pleasantness (P) (similar to sound quality above since using the same bipolar semantic scales) using 
perceptual parameters. They obtained: 

P = 9.70 − 0.47OL − 0.21T + 0.12V + 0.09B (R2=0.58) 
The predicted pleasantness explains 58% of the pleasantness variance, and 90% (R2=0.90) of the 

part pleasantness variance due to the change of sound environment (examined by a multilevel 
analysis). 

Further, they calculated a large set of acoustical indicators from the sound measurements, including 
sound pressure level (L), Zwicker loudness (N), dispersion parameters (e.g. L10-L90, N10-N90), 
standard deviation of sound pressure level, spectrum centre of gravity, number of noise events, 
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normalised time and frequency second derivative (TFSD) (which characterised tonal or harmonic 
sounds such as voices or birds), and spectral flatness deviation. Then, they proposed multiple linear 
regression model to estimate pleasantness based on the most relevant acoustical indicators: 

P = 16.48 − 0.25L50,1kHz + 15.82TFSDmean,500Hz + 16.82TFSDmean,4kHz(1/8s) (R2=0.48) 
The model explains 48% of the pleasantness variance, and 85% (R2=0.85) of the part pleasantness 

variance due to the change of sound environment. 
4.1.2 Tranquillity   

Pheasant et al (10, 11) conducted a series of laboratory studies and used multiple linear regression 
to examine the effects of soundscapes and visual features on the perception of tranquillity of 
environments. They presented audio and visual recordings captured from 11 English rural and urban 
landscapes to 44 volunteers in laboratory. Then, they collected the subjects’ subjective assessments of 
perceived tranquillity of each location on a 11-point scale, and the perceived loudness of five generic 
soundscape components, i.e. human (H), mechanical (M), biological (B), weather (WX), and water 
(WA), on a 5-point verbal scales (“sound source not present”, “quiet”, “moderately quiet”, 
“moderately loud”, and “loud”). 

By including measured LAeq, LAmax, LAmin, LA90, LA10 of the audio recording, the percentage of 
visual natural features (NF) in visual recording, and the perceived loudness of the soundscape 
components in each location as independent variables, they proposed multiple linear regression 
models of tranquillity (TR) as Tranquillity Rating Prediction Tool (TRAPT). Similarly, the perceived 
tranquillity on a 11-point scale was treated as a continuous dependent variable.  

For the audio only experimental condition (with uni-modal auditory stimuli), the prediction 
equations are: 

TR = 9.99 – 0.93LAmax – 0.45PLM + 1.16PLB  
or 
TR = 7.74 – 0.67LAeq – 0.53PLM + 1.19PLB 
where PLM is the perceived loudness of mechanical sounds and PLB is the perceived loudness of 

biological sounds. 
For the audio-video experimental condition (with bi-modal auditory-visual stimuli), the equations 

are: 
TR = 13.93 − 0.165LAmax + 0.027NF (R2=0.52) 
or 
TR = 8.57 + 0.036NF − 0.11LAeq (R2=0.49) 
The results showed that among the factors examined, LAmax or LAeq, and perceived loudness of 

mechanical sounds and biological sounds mostly affected the perceived tranquillity in the audio only 
condition, and LAmax or LAeq, and percentage of visual natural features in the audio-video condition. 

4.2 Multinomial Logistic Regression Model 
In in-situ questionnaire surveys in green spaces of Cáceres, Spain, Rey Gozalo et al (12) collected 

satisfaction assessments of a random sample of 182 adult visitors. They collected each visitor’s overall 
satisfaction with the green spaces, as well as specific satisfactions with the features of cleanliness, air 
quality, noise, aesthetics, safety, users, conservation, location, size, groves, and shade, all of which 
were rated on a 5-point Likert scale from “nothing satisfied” to “very satisfied”. 

They treated the variables as categorical and used multinomial logistic regression (with stepwise 
selection) to study the influence of the specific satisfactions on the overall satisfaction. The likelihood 
ratio showed the satisfactions of noise, users, conservation, and shade features contributed 
significantly to explaining the overall satisfaction. The regression model generated a McFadden R2 of 
0.41, which was considered to have an excellent fit quality. The model could correctly predict 71.4% 
of the cases. 

4.3 Binomial Logistic Regression Model 
Tse et al (13) used binomial logistic regression to predict the acoustic comfort evaluation of urban 

parks from multiple factors and investigate the relative impacts of the factors. They conducted in-situ 
questionnaire surveys with 595 random users in four public parks in Hong Kong. Sound recordings and 
sound level measurements were carried out at the survey spots concurrently. They collected users’ 
responses on subjective perceived sound strength/level (SUB) (“very quiet,” “quiet,” “adequate,” 
“noisy,” and “very noisy”), acoustic comfort (“very uncomfortable,” “uncomfortable,” “neutral,” 
“comfortable,” and “very comfortable”) of soundscape, visual comfort of landscape (LAND), 
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preference for natural sounds (PREFN), preference for anthropogenic and mechanical sounds 
(PREFH) (“very much dislike,” “dislike,” “neutral,” “like,” and “very much like”) on 5-point verbal 
scales, and whether they could hear a particular type of sound from a list of sounds (including sounds 
from insects (INSECT), bird (BIRD), tree (TREE), water flow (FLOW), wind (WIND), bike (BIKE), 
light vehicles (LIGHT), heavy vehicles (HEAVY), talking (TALK), screaming (SCREAM)), as well as 
age group (AGE), gender (GENDER), residency status (RESI), duration of stay in a park (DUR), and 
self-rated auditory sensitivity (AUDIT) (“very bad,” “bad,” “neutral,” “good,” and “very good”). They 
also calculated the acoustic indicator of LAeq (LEQ) from the sound measurements.  

Then, to focus on only high or low acoustic comfort evaluation, they dichotomized the variable of 
perceived acoustic comfort originally rated on a 5-point verbal scale into binary variable, i.e. “low 
acoustic comfort”, referring to a rated response of very uncomfortable, uncomfortable, or neutral, and 
“high acoustic comfort”, referring to a rated response of comfortable or very comfortable. Other 
factors, with an exception of continuous variables such as LAeq, were also dichotomized in the same 
manner. Consequently, they formulated a binomial logit model for predicting the acoustic comfort 
evaluation from the multiple factors studied, and then investigated the relative impacts of the factors 
through the model.  

The results showed a McFadden’s R2 value of 0.26 for the logit model. Based on the model, both 
objective and subjective sound level, existence of sounds from breeze, bikes, and heavy vehicles, 
visual comfort of landscape, residency status, preference for natural sounds, and preference for 
anthropogenic and mechanical sounds, among the various factors, were found to significantly 
influence the acoustic comfort evaluation. 

5. SUMMARY 
The above research studies show that regression analysis is a useful statistical method to study the 

relationship between soundscape effects/descriptors and factors (especially for multiple factors). It 
can be used to find the factors that significantly affect the soundscape effects/descriptors from a set of 
possible factors and produce models to predict the descriptors given the significant multiple factors.  

A number of regression methods are available for analysing different types of dependent variables. 
Table 2 gives a summary of the regression methods frequently used for the different dependent 
variable types. If a dependent variable is continuous, e.g. a soundscape descriptor rated in a 11-point 
scale, multiple linear regression can be used (8-11). If ordinal, e.g. a soundscape descriptor rated in a 
5-point scale, ordinal logistic regression can be used. In certain cases, a continuous or ordinal variable, 
e.g. a soundscape descriptor rated in a 5-point scale, can be also treated as nominal (12) or 
dichotomized into binary (13) according to the specific need of research, for which multinomial 
logistic regression or binary logistic regression can be used respectively.  

Table 2 – Regression methods for different types of dependent variables 

  Continuous  Categorical   

  Interval/ratio Binary  Nominal Ordinal  

Linear regression 
Simple linear regression •     

Multiple linear regression •     

Logistic 

regression 

Binary logistic regression  •    

Multinomial logistic regression   •   

Ordinal logistic regression    •  
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