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Abstract
The total loss factor measurement by the reverberation method is often performed to estimate the boundary
conditions of vibration fields of plate-like structures. In order to clarify how measured values involve discrep-
ancies from the true values, this paper presents a numerical model that simulates the reverberation method to
determine the loss factor in a bending vibration system of a glass plate supported with an elastic material. As a
reference, the total loss factor of a finite plate system is theoretically calculated based on the diffuse vibration
field assumption, where the random-incidence vibration absorption coefficient on the support edge is given for
the semi-infinite plate terminated by the mechanical and moment impedances. Subsequently, the finite element
analysis is performed for a rectangular plate with the impedance boundary, and impulse responses are calcu-
lated with different arrangements of excitation and receiving points. Comparing the theoretical and numerical
results, the validity of the measurement procedures is generally confirmed, however, it is demonstrated that the
measured loss factors tend to become slightly higher than theoretical ones. Additionally, measured results on
real window systems are discussed briefly.
Keywords: Thin plate, Finite element method, Loss factor

1 INTRODUCTION
Understanding vibro-acoustical behaviors of plate-like structures are of great interest in many fields of noise
control engineering. Regarding the acoustic radiation from a rectangular plate, Berry et al. have made a signifi-
cant remark that the radiation mechanism strongly depends on the boundary condition of the plate [1]. Another
important aspect is that energy loss occurs in the reflection of bending waves at the elastic supported edges,
which reduces the radiation from modal vibrations of the plate [2]. These are why modeling of the elastic
boundary support is crucial for simulating accurate sound transmission loss of plate-like structures.
The elastic boundary support has been usually modeled with mechanical and moment impedances, but it is not
yet well established how to determine the impedances. Several papers have dedicated to investigate the effect
of translational and rotational restraint on natural frequencies of finite plates (e.g.[3]), where the analysis was
performed with assuming lumped constants of stiffness, inertance and resistance for the impedance boundary
condition. However, it is not clear to what extent this lumped model is applicable. Besides, input parameters
of the boundary impedances are often experimentally determined by excitation tests. The total loss factor (TLF)
measurement by reverberation method is one of the most common measurement [4]. However, the measured
value has not been investigated in terms of the discrepancy from the theoretical value.
Focusing on a thin plate supported by an elastic material with a rectangular cross section, this paper is dedicated
to improve the usability of the impedance boundary modeling. In Sect. 2, the random-incidence vibration
absorption coefficient on the support edge is theoretically formed under the semi-infinite plate terminated by the
equivalent mechanical and moment impedances. Subsequently, in Sect. 3, finite element analysis is performed
on the impedance model and a precise support material model in order to clarify the reliable condition of the
impedance boundary modeling. Finally, the numerical and experimental measurement of the total loss factor is
conducted in Sect. 4 and Sect. 5.
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2 THEORICAL ANALYSIS
2.1 Governing Equation
A flat plate is assumed to lie on the x− y plane of the Cartesian coordinate. e jωt is assumed as the time
convention throughout this paper. The time-harmonic equation of the Kirchhoff-Love thin plate vibration theory
is given as

B∇2∇2w−ρpω2w = fz + z
∂ fx

∂x
+ z

∂ fy

∂y
(1)

where ∇2 is the Laplace operator, w is the out-of-plane displacement, B and ρp are the flexural rigidity and the
area density of the plate. B is given by B = Ept3

p/[12(1− µ2)], where Ep, µ and tp are the Young’s modulus,
the Poisson’s ratio and the thickness of the plate, respectively. fx, fy and fz are the external stress acting on
the plate surface in each direction. z is the signed distance from the mid-plane of the plate, which is tp/2 on
the upper face and −tp/2 on the bottom face, respectively. The relation between the bending-torsional moments
and the displacement is described as follows.

Mαβ =−B
[
(1−ν)

∂ 2w
∂α∂β

+δα,β ν∇2w
]

(2)

where α and β take x or y. δα,β is the component of the unit tensor. Throughout this paper, the internal loss
factor of the plate, ηp, is set as zero in order to focus on the effect of the edge damping.

2.2 Impedance boundary conditions
As Eq. (1) is the partial differential equation of fourth order, two conditions should be defined at a boundary:
one is for translational motion and the other is for rotational motion. Assuming the local reactive boundary,
these conditions can be generally described by using the mechanical and moment impedances, ZQ and ZM, as
follows.

Q̃ =

(
∂Mn

∂n
+2

∂Ms

∂ s

)
=− jωZQw, Mn = jωZM

∂w
∂n

, (3)

where Q̃, Mn, and Ms are the effective shear force, normal and torsional moments along the boundary, respec-
tively. ∂/∂n and ∂/∂ s are the normal and tangential directional derivative along the boundary, respectively.

2.3 Oblique-incidence reflection coefficient
As depicted in Fig. 1, let us consider a situation where the plane propagative bending wave impinges to the
boundary of x = 0 at an incidence angle of θ . In this semi-near field, general solution of the Eq. (1) is given

x

y

A+

A– C+
Evanescent

Impedance Boundary

Progressive

Regressive

O

θ

θ

Figure 1. Problem setting for the analysis of the plate
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as [5]

w(x,y) = (A+e− jωkBxx +A−e jωkBxx +C+e−ωkBxx)e− jkByy, (4)

where kBx = kB cosθ , kBy = kB sinθ and kEx = kB(1+ sin2θ)1/2. kB is the bending wave number on the plate
defined as kB = ω1/2(B/ρp)

1/4. Substituting Eqs. (2) and (4) into the former or latter equation of Eq. (3), the
following relations are obtained.

(γ−β+− zq)A+− (γ−β++ zq)A−− ( jγ+β−+ zq)C+ = 0, (5)
(β−− zmγ−)A++(β−+ zmγ−)A−− (β++ jzmγ+)C+ = 0, (6)

where zq,zm are the normalized mechanical impedance and moment impedance defined as zq =ωZQ/(k3
BB),zm =

ωZM/(kBB), respectively. And the following values are introduced, β± = 1 ± (1 − ν)sin2θ and γ± = (1 ±
sin2θ)1/2. Combining Eqs.(5) and (6), the oblique-incidence reflection coefficient is obtained as

r(θ) =
A−

A+
=

γ−β 2
+−2z+γ−zqzm − jγ+(β 2

−+ zqzm −2γ−zm)

γ−β 2
++2zq + γ−zqzm + jγ+(β 2

−+ zqzm +2γ−zm)
. (7)

Furthermore, oblique-incidence vibration absorption coefficient is given as α(θ) = 1−|r(θ)|2.

2.4 Equivalent impedances of a rectangular elastic support material
Let us consider deformations of a rectangular elastic support material as depicted in Fig. 2. The three-
dimensional displacements of the support material are continuous to those of the plate on the joining face
and fixed at the opposite face. Furthermore, the other faces are under the free support. In order to derive the
impedances in the closed form, the following assumptions are introduced:

1. only the one-dimensional longitudinal vibration is excited in the thickness direction of the support mate-
rial,

2. the translational out-of-plane displacement and the rotational slope of the plate are uniform over the sup-
porting depth.

The validity of the first assumptions is numerically investigated in Sect. 3. The second assumption is consid-
ered to be valid when the bending wavelength is sufficiently larger than the supporting depth. Under the first
assumption, the longitudinal modal stress in the support material of the lower side is expressed as

σz(x,z) = k1Ẽsw(x)
cos(k1z)
sin(k1hs)

(8)

where w(x) is the displacement on the joining face. The second assumption states that the displacement is
w(x) = w0 +θ0x with the constant translational displacement w0 and the constant rotational slope θ0. hs is the
thickness of the support material, k1 is the wave number of the longitudinal wave in the support material, and
Ẽs is the complex Young’s modulus defined as Ẽs = Es(1+ jηs) with the loss factor ηs. For the translational
motion, the force on the joining face, z = hs, is obtained by integrating σ(x,hs) over the supporting depth ds,
whereas for the rotational motion, the moment on the joining face is obtained by integrating σ(x,hs)× x over
the supporting depth. Considering the reaction forces of the support materials on both sides, the mechanical
and moment impedance are obtained as follows.

ZQ =
2
∫ ds/2
−ds/2 σz(x,hs)dx

jωw0
=

2ρsc̃1ds

j tan(ωhs/c̃1)
, ZM =

2
∫ ds/2
−ds/2 σz(x,hs)xdx

jωθ0
=

ρsc̃1d3
s

6 j tan(ωhs/c̃1)
(9)

where c̃1 is the speed of longitudinal wave defined as c̃1 = (Ẽs/ρs)
1/2and ρs is the material density of the

support material. Under the preceding assumptions, Eq. (9) is equivalent mechanical and moment impedance of
the rectangular elastic support material.
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Figure 3. Problem settings and domain no-
tation for calculating mechanical and mo-
ment impedances.

Table 1. Physical properties of the plate and supporting material.

property plate (glass) support (putty)

Young’s modulus [N/m2] Ep = 7.5×1010 Es = 1.0×106,
1.0×108

Poisson’s Ratio [] ν = 0.22 N/A
Loss Factor ηp = 0 ηs = 0.5

Material Density [kg/m3] ρp/tp = 2,500 ρs = 1,000
Thickness [m] tp = 0.01 hs = 0.005

Depth [m] N/A ds = 0.015

3 NUMERICAL INVESTIGATION
This section discusses the validity of the mechanical and moment impedances given in the previous section
through the finite element analysis (FEA). Figure 3 shows the problem setting and the domain notation in this
section. The boundary condition of the plate and the elastic material is free support unless otherwise indicated.
The physical properties for the calculation are listed in Table 1.

3.1 Analysis procedure of normal-incidence vibration indicators
The bending vibration field becomes one-dimensional in the strip plate, which is described as

w(x) = A+e− jkBx +A−e jkBx +C+e−kBx +C−ekBx (10)

By observing the displacements at four points, x1 to x4, the following matrix equation can be set according to
Eq. (10). 

e− jkBx1 e jkBx1 e−kBx1 ekBx1

e− jkBx2 e jkBx2 e−kBx2 ekBx2

e− jkBx3 e jkBx3 e−kBx3 ekBx3

e− jkBx4 e jkBx4 e−kBx4 ekBx4




A+

A−

C+

C−

=


w(x1)
w(x2)
w(x3)
w(x4)

 (11)

Then, the unknown amplitudes of propagative and evanescent waves, {A+,A−,C+,C−}T , are obtained by solving
the above equation. It was confirmed by a preliminary study that the theoretical impedances best approximate
those of the precise model (I) just at the middle point of the joining depth: the middle point is set as x = 0
as depicted in Fig. 5. Then, normalized mechanical and moment impedances at x = 0 and normal-incidence
vibration absorption coefficient are calculated as follows:

z′q =
A+−A−+ jC− jC−

A+−A−+C++C− , z′m =
A+−A−−C−C−

A+−A−− jC++ jC− , αn = 1−
∣∣∣∣A−

A+

∣∣∣∣2 .
3.2 Results and discussions
FEA for the model (I) is performed under shear limp and elastic conditions for the support material. The
former condition corresponds to the presented impedance model, and the shear stress is neglected in the FEA.
The default physical properties are the same as those investigated in the previous section. Calculation is done
at the 1/12 octave center frequency from 16 to 4,000 Hz. The wavelength of the bending wave on the plate at
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Figure 4. Ratio of the absolute mechanical (moment) impedance of the model (II) to that of the theoretical
model. The Young’s moduli of the support material are (a) 106 and (b) 108.

4,000 Hz is 0.16 m, and enough larger than ds. Then, the second assumption stated in Sect. 2.4 is acceptable
in this point.
Figure 4 shows calculation results: ratio of the absolute impedance of the model (II) to that of the model
(I). For the shear limp condition, the theoretical model presented in Sect. 2 well approximates the mechanical
and moment impedances around and below fq, the translational mass-spring resonance frequency. Above fq,
the support material can no longer be considered as a lumped constant system, which causes the pronounced
discrepancy. Regarding the shear elastic model, the mechanical impedance is almost the same as those of
the shear limp model. However, the moment impedance is underestimated in the entire frequency range by
neglecting the shear stress of the support material. In particular, the ratio is constant below fq. Note that these
tendencies are also observed when changing plate thickness and the support material thickness and depth.

4 NUMERICAL MODELING OF A TOTAL LOSS FACTOR MEASUREMENT
The TLF measurement by the reverberation method is often performed to get or to estimate input values for
theoretical or numerical calculations. However, it is not clear how measured values involve discrepancies from
the theoretical values for the diffuse field, which increases the uncertainty of subsequent calculations. In this
section, the TLF measurement is numerically modeled to understand the behavior of measured values. This
practical information is valuable for experimental verification of the proposed impedance model in future work.

4.1 Theoretical foundation
When the 60 dB decay time, T60, is measured, a total loss factor ηtot is obtained as

ηtot =
6ln10
ωT60

, (12)

because of the definition, γ = ηtotω , where γ is the exponential decay rate.
In the two-dimensional diffuse vibration field, the mean-free path is given as πS/ltot with the plate area S and
the total perimeter length ltot . Then the exponential decay rate, γDF, is defined by γDF = cgltotαr/πS, where
cg is the group velocity of the bending wave defined as cg = dω/dkB, and αr is the vibration absorption
coefficient for 2-D random-incidence. Based on these equations, the total loss factor in the diffuse vibration
field is theoretically given as

ηtot =
cgltotαr

πωS
. (13)

4.2 Numerical analysis conditions
Following the reference [6], calculation arrangement is set as illustrated in Fig. 5. In the FEA, all perimeters
are set as impedance boundaries because this measurement is usually performed for specimens in normal service
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Figure 6. Loss factors calculated for the plate with different sizes and
the same aspect ratio. The Young’s moduli of the support material are
(a) 106 and (b) 108.

condition. The impedance values are given by Eq. (9). Calculation is executed in 0.5 Hz intervals from 0 to
2000 Hz. Subsequently, the transfer function of the acceleration response is converted to the transient response
by the inverse Fourier transform. The reverberation time, T60, is determined by the least square regression of the
energy decay curve obtained by the backward integration of the filtered transient response. The total loss factor
is determined by Eq. (12) and the 5-point-average of T60. It is well known that the reverberation of the band-
pass filter (BPF) itself affects the reverberation time (RT) of the filtered response. In order to approximately
equalize the cut-off characteristics among the different bands, the order of the 1/3-octave band FIR filter of the
center frequency fc is set as N ×2M , where N is the order at 1 kHz and M is calculated by

M = ⌊log2(1000/ fc)+0.5⌋,

and in this case, N = 64 is appropriate by a preliminary study.

4.3 Results and discussions
4.3.1 Effect of the plate size
It is obvious from Eq. (13) that TLF of a vibration system depends on the area and the total perimeter length.
The TLF are calculated for three sizes of the plates: 40 % smaller and larger plates than the default size.
Figure 6 compares calculated results with the theoretical values for the diffuse vibration field. The calculated
results appear to capture the frequency trends of the theoretical values. Furthermore, TLFs for the smaller plate
fluctuate more than those for larger plates do. However, the calculated values are two to four times larger
than the theoretical values in the entire frequency range. In general, the measurement of the sound absorption
coefficient by reverberation room method involves two main error factors that cause the discrepancy from the
theoretical value under the diffuse field assumption. One is the lack of the diffusivity, which usually appears
as the underestimation of the sound absorption coefficient. The other is the diffraction at the edge of the
finite specimen, which usually appears as the overestimation of the sound absorption coefficient. Similarly, the
TLF measurement on the rectangular plate involves the non-diffuseness and the diffraction effects, and the latter
seems to be predominant. Although all perimeters are impedance boundaries in the present study, the diffraction
effect is considered to occur at the plate’s corners.

4.3.2 Effect of the support material’s properties
Figure 7(a) shows the calculated TLF with changing the support material’s loss factor and fixing the Young’s
modulus to 1.0× 106 N/m2. Figure 7(b) shows the calculated TLF with changing the Young’s modulus of
the support material and fixing the loss factor to 0.5. As discussed in the above, the discrepancy between
calculated and theoretical values appears to be large around the mass-spring resonance frequency at which the
TLF becomes high. Inverse estimation of the support material’s physical parameters or equivalent resistance,
stiffness and inertance constants is often performed in order to obtain the input parameters for theoretical and
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Table 2. The types of the measured window.

glass thickness [m]
front side 0.004
back side 0.006

thickness of air layer [m] 0.002
sash material aluminum
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Figure 9. Measured Loss factors on individual excitation
and receiving points

numerical calculations [7]. However, from the above observations, the support material’s damping parameter
such as the loss factor and equivalent resistance constant can be overestimated.

5 EXPERIMENTAL MEASUREMENT OF THE TOTAL LOSS FACTOR
In the previous sections, it is clarified how different the measured value is from the theoretical one. Following
that, this section reports the results of TLF measurement of a real window system.

5.1 Measurement conditions
Figure 8 and Table 2 demonstrate the set-up of the measurement. We arranged double pane windows for certain
reasons, although the glass plate with supporting putty is investigated assuming a single pane window in the
previous section. Also, the physical property of the windows is not clear as the reason for the difficulty of
measurement. Therefore, the purpose of this section is following the tendency of measured values. In this
measurement, two excitation points and five receiving points are set, and each measurement is repeated three
times. The windows are excited by dropping a steel ball of 20 mm diameter 100 mm above the window, and
this vibration is measured by an acceleration pickup at five receiving points. Finally, the total loss factor of
windows is determined by measured T60 by averaging the measurements of 30 times and Eq. (12). Note that
the taps of the FIR filter are set as 128×2M by preliminary analysis. Measurement is analyzed at the 1/3 octave
bands from 100 to 5000 Hz.
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5.2 results and discussions
Figure 9 shows measured TLF by individual measurement and its averaging value. Results on same excitation
and receiving points are illustrated by the same color. While the measured values of TLF at the same condition
are very close in the entire frequency range, the ones on different conditions vary widely in low frequencies.
However, estimating the equivalent impedance can be enable based on this result, and it can lead to accurate
simulation of the sound transmission loss.

6 CONCLUSION
In this paper, mechanical and moment impedances of a rectangular supporting elastic material were derived
in closed form with the some assumptions. Theoretical analysis was provided to investigate the behaviors of
bending wave absorption at the impedance boundary. Incidence angle dependency of the vibration absorption
coefficient was confirmed to be weak until about 60-degree-incidence. The proposed impedances were compared
with those of the precise support material model by the finite element analysis. This study confirmed that
the presented mechanical impedance agreed well with the precise model around and below the translational
mass-spring resonance frequency. On the other hand, the presented moment impedance was underestimated
in entire frequency range due to neglecting the shear reaction of the support material. Furthermore, above
the translational mass-spring resonance frequency, the support material can no longer be replaced as a lumped
constant system. Thus the impedance boundary model does not sufficiently simulate the behavior of the precise
model in particular at high frequencies.
Numerical modeling of the loss factor measurement was performed in order to investigate the difference between
the theoretical and measured values. Compared with the theoretical TLF under the diffuse field assumption, the
calculated values were overestimated due to the diffraction effect and the self-reverberation of the band pass
filter. This tendency should be kept in mind when conducting inverse estimation of the support material’s
physical parameters or equivalent resistance, stiffness and inertance constants.
Finally, experimental measurement is executed. Although this condition widely differs from numerical measure-
ment in Sect 4, the result implies the numerical measurement corresponds to the experimental ones.
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