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Abstract

Sample-based synthesis is one of the most common synthesis methods of the digital synthesizer. It can syn-
thesize musical instrument sounds well because it plays recorded sounds instead of generating sounds such as
additive and frequency modulation syntheses. The recorded sounds are usually stored in the time domain. If
the recorded sounds are stored in the time-frequency domain, sound processing can be simplified. Users can
process audio signals intuitively by operating the time-frequency bins of the spectrograms. However, the repre-
sentation of sounds in the time-frequency domain usually requires more memory than that in the time domain.
In synthesizers, if much data is needed, hardware costs are increased correspondingly. Therefore, a technique
to reduce the amount of data is required. In this paper, to reduce the amount of data, we introduce a sparse
modeling technique for musical instrument sounds in the time-frequency domain. We propose an optimization
algorithm of sparse modeling with four shrinkage operators. Numerical experiments show that the data quantity
of the signals reduced by over 95 percent by using the technique.

Keywords: Sample-based synthesis, Spectrogram, Sparse modeling, Alternating direction methods of mul-
tipliers (ADMM)

1 INTRODUCTION

There are many synthesis methods of digital synthesizers, such as additive synthesis, subtractive synthe-
sis, wavetable synthesis, frequency modulation synthesis, and sample-based synthesis [1,2]. Especially,
sample-based synthesis is a powerful method when synthesizers imitate traditional musical instrument
sounds like piano, violin or trumpet. The synthesizers of this type have read-only memory (ROM) in
which the recorded sounds are stored, and synthesize sounds by playing them back. Generally, the
recorded sounds are stored in the time domain.

If the recorded sounds are stored in the time-frequency domain, sound processing can be simplified.
Users can process audio signals intuitively by operating the time-frequency bins of the spectrograms
because time-frequency bins have information for a certain frequency band in a certain time. However,
the representation of sounds in the time-frequency domain usually requires more memory than that in
the time domain. In synthesizers, if much data is needed, hardware costs are increased correspondingly.
Therefore, a technique to reduce the amount of data without sacrificing quality is required.

It is expected that the time-frequency bins necessary to represent the musical instrument sounds exist
sparsely since sounds have harmonic structure. If it is possible to express the musical instrument sound
sparsely, the reduction of the amount of data is realized.
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One of the effective tools for providing sparse representation is sparse modeling. This approach is
widely used in signal processing, image processing, and machine learning [3]. For effective modeling,
it is necessary to consider the characteristics of the signals and its transformation. Thus, we focus
on that the window function extends spectral peaks and introduce "social sparsity [4]" to the sparse
modeling for musical instrument sounds.

In this paper, we propose some algorithms of sparse modeling for musical instrument sounds in the
time-frequency domain. We also found that these algorithms are effective in the viewpoint of the
amount of data compared with the usual time domain representation.

2 PRELIMINARIES

2.1 Time-frequency Representation

The short-time Fourier transform (STFT) is one of the most popular methods of the time-frequency
representation [5]. The discrete STFT is given by

X[n,m] =" walt — Anja[fle”2r-amm/L (1)

where x[t] is the time domain signal, w, is an analysis window, L is window length, A is a window
shifting step parameter, and i is the imaginary unit. Inverse transformation of STFT (iSTFT) is also
given by

z[t] :Z ws[t — An] ( Z X[n 127r(t—An)m/L> ’ )

where w; is a synthesis window [6]. In STFT, one sample point in the time domain is analyzed by
@ = L/A windows. As a result, the time-frequency representation has () times as many time-frequency
bins as the sample points of the time domain representation. In other words, STFT usually provides
redundant expression. If the signal is expressed redundantly, it is possible to represent it in various
ways. Thus, we propose algorithms to find the representation where the number of zeros is maximal
(i.e., sparsest) in the time-frequency representation.

2.2 Sparse Modeling

Sparse modeling is an effective method to solve underdetermined problems, and it is possible to reduce
the amount of data significantly when signals admit sparse representation [3]. Studies based on the
sparsity is widely conducted in acoustic engineering, including sound source separation [7—10], speech
enhancement [11,12] and restoration of the sound field [13-15].

Assuming that the musical instruments sound is z[¢] and the observed musical instrument sound includ-
ing noise is Z[t], the time-frequency representation of x[t] is given by

Find X st || F'X — | <€, 3)

where ||y|lc = max; |y;|, #* is a operator which indicates iSTFT, and ¢ is a small constant which
indicates the tolerance of the error between x[t] and Z[t]. This equation is an underdetermined system,
hence there are innumerable solutions to it.



To get the sparsest solution, we should solve the optimization problem:

m)}n to(X) +AN(X) “4)

X
wo(X) = 0 (Xe C_) , C={XecC™"N||7*X —b|loo <€} . (5)
oo (otherwise)

The ideal function as A(X) giving a sparse solution is ¢y norm defined as a function representing the
number of nonzero elements of X [16]. However, it is difficult to find the optimal solution of this
minimization problem because it is combinational optimization of high-dimensional data. Therefore,
the o norm is often relaxed with the convex function, ¢; norm, to find the optimal solution [17-20].

2.3 Alternating Direction Methods of Multipliers (ADMM)

There are many algorithms for optimization problems. One of them is the alternating direction meth-
ods of multipliers (ADMM) [21]. Many optimization problems including the sparse modeling, can be
interpreted as the following minimization problem:

min f(z)+g(z) st. Ke+Lz=c, (6)

where f and g are real-valued cost functions, x € RN, 2 e RN, K e RSN [ e RSN and ¢ € RS,
ADMM can solve the above minimization problem, and it is written as the following procedure:

] — argmin {f(x) + §”K$ + L2 — ¢ 4yl ||§} )
gt = argmin {9(2) + gHK:U[”H] + Lz — c+ul" ’%] ®)
ulntl = )y peglett) o opalntl] )

where p is a positive constant. The strengths of the ADMM is that it can be applied even if the
cost function is not differentiable. By this fact, we can solve the optimization problem which has
non-differentiable functions such as ¢; norm and ¢, norm. The effectiveness of ADMM has been
substantiate by many studies [22,23].

3 PROPOSED METHODS

3.1 Proposed Algorithm
Applying ADMM to Eq. (4), it is formulated as

f@) = (@), g(z)=M(), K=1, L=—I, ¢=0, (10)

where [ is the identity matrix. Using Eq. (7) to Eq. (9), an algorithm for the sparse modeling is
derived, and it is summarized in Algorithm 1. Here, sign(y) is the signum function,

{y/ly! (y #0)

: (11)
0 (y=0)

sign(y) =
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Algorithm 1 Proposed Algorithm

Initialization: %l € CM*N

repeat
a < FH(H —ulkly
e+ a2 —b;

e < sign(e) min{|e|, €};
) G —ylfy 4 7 (b + e — o) ;
2R P (2l 1K)
Wk 1) ]y k1] ke
k+—k+1;

until convergence;

I

F is a operator which indicates STFT, and P.(v) indicates the proximity operator of AA(X). The
proximity operator [24] is defined by

1
P.(v) = proxy, (v) = argmin |AA(z) + in — o3| . (12)

3.2 Thresholding and Shrinkage
3.2.1 Soft-Thresholding
Let A(X) be a ¢; norm, Py, is given by

[Pe, (2)][n] = max {1 = A/[z[n]], O} 2[n] , (13)

and it is known as a soft-thresholding operator. /1 norm is used in various optimization problem since
it is a convex function [17-20].

3.2.2 Log-Thresholding
When A(X) is ¢; norm, if there are large time-frequency bins in X, it is expected that these are
reduced by the optimization problem Eq. (4). For this reason, it has been proposed relaxing the effect
of ¢; norm using a logarithmic function [25,26].
Let A(X) be

A(X) =log(d + | X)), (14)

where 0 is a small positive constant, Pyog is given by

5 (0] = 6) + VR +68)2=2X)  (2[n] > V2X - 9)
[Prog(2)][n] = { 3 ((2[n] + ) — V(=[] +6)2 —2X)  (2[n] < V2A —9) . (15)
0 (otherwise)
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Figure 1. Schematic diagram of social shrinkage

3.2.3 Social Shrinkage

In the time-frequency representation of instrumental sound, it is considered that energy is concentrated
in the grouped part of the spectrograms because the window function extends spectral peaks. Hence,
we propose to combine social sparsity [4,27,28]. This is sparse modeling in which the information
of surrounding time-frequency bins is added as a weight to take a decision: keeping or discarding the
bin. The effects of this modeling are expected that the time-frequency bins of the spectrogram become
grouped and noise which is not related to the signal is reduced. A schematic diagram of social sparsity
is shown in Fig. 1. Introducing the social sparsity, Psocial 1S given by

[Psocial] (2)[n] = max{1 — \/V"¥[n], 0} z[n] , (16)

V¥n] = Jw|z[n]f? (17)

where w is a non-negative kernel, and * indicates the convolution operation. Compared to the Eq. (13),
Eq. (16) can be regarded as a kind of soft-thresholding.

3.2.4 Social-Log Shrinkage

Finally, we propose combining social sparsity and log-thresholding. In Eq. (15), Psociallog can be de-
termined by replacing z[n] with V*[n], and Psocial-iog is given by

(V¥[n] = 6) + (Ve[ +0)2 = 2X)  (V¥[n] > V2X = 9)
(V¥[n] +90) — (V¥ ]+ 0)2 =2X) (V¥[n] <vV2x—4) . (18)

(otherwise)

[Psocial—log (Z)] [’I’L] =

O NI N

By combining social sparsity and log-thresholding, it is expected that non-zero elements of spectro-
grams can be grouped while suppressing the effects of bias.
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Figure 2. Amplitude spectrograms and numbers of non-zero elements

4 EXPERIMENTS

Using the proposed method, we modeled the recorded piano sound to be a sparse representation in the
time-frequency domain. In the simulation, the target sound was piano sound A4 (442 Hz), the window
function was Hanning window, L was 212 sample, A was 211 sample, A was 0.1, € was 3.92 x 1077,
w was a Gaussian kernel with a size of 7 rows and 3 columns, and iteration number was 3000. For
comparison, we performed sparse modeling in four cases: (a) soft-thresholding, (b) log-thresholding,
(c) social shrinkage, and (d) social-log shrinkage. An expanded view of the amplitude spectrograms
and the number of non-zero elements of the spectrograms are shown in Fig. 2.

From the results, it was confirmed that a large amount of data was reduced by sparse modeling. In (a)
and (b), non-zero elements were scattered, while in (c) and (d), non-zero elements were collectively

present due to the effect of social sparsity. In addition, we found that log-thresholding is able to reduce
more non-zero elements.

S CONCLUSION

In this paper, we propose a method to represent instrument sounds sparsely in the time-frequency do-
main. The simulation shows that it is possible to reduce most of the data by sparse modeling, and the
combination of log-thresholding and social sparsity is effective. In future works, we plan to consider
the implementation of high-speed iSTFT using sparsity so that the synthesizer can sound in real time
even if sounds are contained as time-frequency representation.
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