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ABSTRACT 

An accurate prediction of speech intelligibility (SI) is a useful tool for the development of speech 

enhancement algorithms; if a model is blind it could also serve as real-time SI monitor in real-world 

applications. A blind processing strategy implies that speech or noise references are not used for predictions. 

Previous work [Spille et al. (2018), Comp. Speech & Lang. doi:10.1016/j.csl.2017.10.004] introduced an 

accurate SI model using automatic speech recognition based on a deep neural network, which however had 

access to a priori information about the noise signal. This current work investigates model predictions for 

mismatched noise with the speech reception threshold (SRT) as target measure. Moreover, we simulate 

hearing impairment to explore if SI can also be predicted for hearing-impaired listeners. For similar but 

mismatched noises, we obtain an SRT RMSE of 1.5 dB in contrast to 1.9 dB obtained with the previous 

model. Further, several baseline models (SII, ESII, STOI, and mr-sEPSM) are outperformed. The 

hearing-impaired model reached an RMS error of 4.2 dB which is less accurate as for normal-hearing 

listeners. This result has been expected because of the larger variety in the SI of hearing-impaired listeners. 
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1. INTRODUCTION 

Communication and speech intelligibility (SI) are essential for social interaction in everyday life. 

Additive noise can negatively affect SI, and the strength of this influence depends on the type and 

relative level of the masker as well as on the individual hearing ability. 

Speech enhancement algorithms have the potential to increase SI. During their development 

process, it is often informative to assess their influence on the SI. One option is to perform SI 

measurements with subjects, but this is very time-consuming and expensive. By using a model with an 

accurate prediction of SI, this effort can be reduced. 

In the last decades, several models have been developed to predict the SI but all of them need a 

different amount of a priori knowledge for the prediction. An interesting question is whether it is 

possible to develop completely reference-free models which could be used for SI monitoring in 

real-world scenarios. 

Spille et al. [1] developed a SI prediction model based on automatic speech recognition (ASR) that 

uses a deep neural network (DNN) as acoustic model. This model does not need the separated signals 

but requires a different kind of reference since it used identical noise signals for training and testing of 

the ASR system. 

To investigate if the use of the identical noise signals leads to an overfitting of the model, we 

modified the training procedure. We used only similar noises for training and testing instead of the 

identical noise. Additionally, we included hearing impairment to the model to investigate if the SI of 

hearing-impaired listeners can also be predicted.   
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2. METHODS 

2.1 Stimuli 

The speech material for the ASR training as well as for the listening experiments was the Oldenburg 

sentence test (OLSA) [2]. It is a matrix test with the structure name, verb, number, adjective, object  

(e.g. “Peter buys eighteen wet shoes”), containing 120 different sentences. For the ASR training the 

same sentences were used but recorded from 20 different speakers (10 male, 10 female) with a total 

length of ten hours [3]. 

To mask the speech signals, eight different noise types were used. The speech shaped noise (SSN), 

the sinusoidal SSN (SAM-SSN), the SSN multiplied with the envelope of a broadband speech signal 

(BB-SSN) and the across frequency shifted SSN (AFS-SSN) are all based on an international speech 

signal (ISS) with a length of 11 hours. Furthermore, a noise vocoded version of the ISS (NV-ISS), a 

single talker (ST) and a noise vocoded version of the ST (NV-ST) were used for masking. Each noise 

signal was split into 80 % for the ASR training and 20 % for the testing.     

2.2 ASR Training and Testing 

The first step of the ASR training is the calculation of the amplitude modulation filter bank 

(AMFB) features [4] of the mixed audio signals (speech and noise). This is a decomposition of the 

signal into sub-band amplitude modulation frequency components. For this purpose, a short-time 

Fourier transform, the application of a mel-filter bank, a discrete cosine transform and an analysis of 

the amplitude modulations are performed. The AMFB features are the inputs for the DNN that maps 

feature inputs to phoneme categories (in our case context-dependent triphones). The network is a fully 

connected feed-forward model with seven hidden layers and 2048 units per layer.  The DNN output is 

processed by a hidden Markov model to find the transcript that is most likely given the triphone 

estimates. The resulting model is referred to as automatic speech intelligibility prediction model 

(ASIP) in the following.  

The training was carried out with the recorded sentences of the OLSA. The speech files were mixed 

with the eight noise types at random signal to noise ratios (SNRs) between -10 and 20 dB, resulting in 

80 hours of mixed sound files. For the ASR testing, the original recordings of the OLSA sentences 

were used. These were mixed at 400 random SNRs between -30 and 20 dB with each of the noises 

types to sample the psychometric functions. 

2.3 Inclusion of Hearing Loss in the Model 

The individual prediction for hearing-impaired listeners was done by including the hearing loss 

into the calculation of the AMFB features. After the application of the mel-filter bank, a comparison of 

the magnitudes and the individual threshold takes place. All magnitudes which were smaller than the 

threshold were raised up to the threshold. 

2.4 Listening Experiments 

To verify the predictions of the model, we compared our data with the listening experiments of 

Schubotz et al. [5] who measured the OLSA with eight normal-hearing listeners for the same eight 

noise types as described in 2.1. Moreover, listening experiments with hearing-impaired listeners were 

performed to check the prediction accuracy of the model for this group of listeners. The subjects either 

had a very mild, mild or moderate hearing loss and were between 53 and 80 years old (median 71 

years). 

2.5 Comparative Models 

To evaluate the model predictions, five comparison models were used. Four of them are established 

baseline models and the other is the original model of Spille et al. [1]. All of them need a different 

amount of a priori knowledge. The speech intelligibility index (SII) [6] and the extended speech 

intelligibility index (ESII) [7] require separate speech and noise signals. The short-time objective 

intelligibility measure (STOI) [8] needs the clean speech and the multi-resolution speech envelope 

power spectrum model (mr-sEPSM) [9] requires information about the type of speech material (e.g. 

single words, meaningful or meaningless sentences). The ASR based model of Spille et al. [1] knows 

the noise signal from the training and needs the transcripts for the SI prediction.  
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3. PRELIMINARY RESULTS AND DISCUSSION 

To quantify the differences between the subjects and the model predictions, the root mean squared 

error (RMSE) was calculated for the ASR models and also for the baseline models SII, ESII, STOI and 

mr-sEPSM. The results are listed in Table 1. The RMSE of ASIP for normal-hearing listeners is close 

to the results of the original model, and both outperform the baseline models. The RMSE of ASIP for 

hearing-impaired subjects is larger, but since individual predictions were being made (based on the 

listener’s audiogram) this prediction is a more difficult task than the prediction of averaged data from 

NH listeners. Nevertheless, the RMSE of ASIP HI is smaller than the RMSE of three of the baseline 

models with normal-hearing predictions. Perhaps the model predictions for hearing-impaired listeners 

can be improved by inserting additionally a distortion component instead of using only the pure tone 

audiogram. 

 

Table 1 – Root mean square error (RMSE) of the SRT 50 prediction for different baseline models 

[5], the DNN based model of Spille et al. [1] and the current study. The current study is split in the 

predictions of ASIP for normal-hearing listeners and hearing-impaired listeners. 

 Baseline models ASR models 

 SII ESII STOI mr-sEPSM Spille ASIP NH ASIP HI 

RMSE in dB 7.9 5.6 9.2 3.5 1.9 1.6 4.2 

 

4. CONCLUSION 

The results of the modified model are similar to the results  of the original model [1], which means 

that overfitting is not an issue with the DNN-based SI model. The modification of the training 

procedure is one step in the direction of creating SI models that do not require a speech or noise 

reference. The speech intelligibility can also be predicted for hearing-impaired listeners, but the model 

could be extended by a distortion component to increase the accuracy for this group of listeners. In 

future work, different schemes for including hearing impairment into the model will be explored.  
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