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Abstract
Several mathematical models of the human middle ear have been developed throughout the last 70 years for
different purposes. Although the experimental data of the dynamical behavior of the middle ear show a large
dispersion, only deterministic models have been proposed in the literature. This work aims to develop a prob-
abilistic model of the human middle ear to study its dynamic behavior uncertainties. Then, a coupled lumped
parameter and analytical model is combined to Monte Carlo simulations (MCS). The parameters of the deter-
ministic model was fitted to match the stapes velocity to one experimental results. Then, the input parameters
were modeled with Gaussian probability density functions in the MCS. It was observed the uncertainty of the
natural frequencies increases with the mode order. Also, the dispersion seen experimentally could not be repro-
duced defining the standard deviation (StD) of the input parameters as 20% of the mean value. Therefore, the
StD of the input parameters was increased up to 30%, 40% and 50% of the mean values. Results suggest the
StD should be defined separately for each input parameter in order to reproduced the experimental dispersion.
At last, next steps are set for improvements in the proposed probabilistic approach. Keywords: Middle ear,
Biomechanics, Uncertainties, Probabilistic model

1 INTRODUCTION
The middle ear is a biomechanical system that composes the peripheral auditory system of mammals together
with the outer and inner ears. The middle ear is mainly composed of a complex fibrous membrane called tym-
panic membrane (TM), an ossicular chain comprising three tiny bones (malleus, incus and stapes), two synovial
joints and various soft tissues such as ligaments, tendons and muscles [1]. Two functions are assigned to the
physiological working of the middle ear. At first, the middle ear matches the several different impedances of
the outer and inner ears, improving the transmission of the sound energy between these two systems. Secondly,
the middle ear protects the inner ear against high static pressures and high sound stimuli through passive and
active working [2].
For a proper understand of the middle ear mechanics under healthy and pathological conditions as well as to
evaluate the performance of prosthesis and hearing devices, several mathematical models of the middle ear have
been proposed in the literature [3]. Since Esser [4] in 1947, who studied the deformation of the TM through
an analytical formulation, all mathematical models of the middle ear were developed using deterministic ap-
proaches. In contrast, experimental data of the human middle ear dynamics generally shows large discrepancies
among samples. Consequently, it is still debatable the applicability of deterministic models of the middle ear
once the real structure is a fuzzy system.
In this paper we use a lumped parameter model combined to Monte Carlo simulations in order to develop a
probabilistic model of the human middle ear for studying its dynamic behavior uncertainties. In addition, a
simplified analytical model of the outer ear is coupled to the middle ear model to expand the analysis. In
the end, we aims to provide a preliminary investigation on the statistical properties of the human middle ear
mechanics through a probabilistic approach.
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2 METHODS
Our analysis of the middle ear’s uncertainties is based on four different measures: the first three natural fre-
quencies fn, the frequency response of the stapes velocity by the acoustic pressure at the TM Hfp, the input
impedance of the middle ear ZME and the wideband Energy Reflectance ER (also called as Power Reflectance).
The definition of the last three measure are given as

Hfp =Vfp/PTM, (1)

ZME = PTM/VTM (2)

and
ER = |RME|2, (3)

being Vfp the velocity of the stapes, PTM the sound pressure at the TM, VTM the velocity of the TM and RME
the reflection coefficient of the middle ear seen by the ear canal. These quantities were chosen to reach as
mechanical measures ( fn, Hfp and ZME) as well as vibroacoustical measures (ER). While a pure mechanical
model can be used to obtain the mechanical parameters, a vibroacoustical model is necessary to calculate ER
taking account the geometry of the ear canal. Thus, the two needed approaches are described in Section 2.1
and 2.2. Lastly, Section 2.3 details the Monte Carlo simulation used in this work.

2.1 Lumped model of the middle ear
The lumped parameter model used here is based on the model proposed by Feng and Gan [5]. Our model
has four degrees of freedom (DOF) related to the normal displacement of the four presented masses, neglecting
the rotational movements. The masses represent the TM (m1), malleus (m2), incus (m3) and the stapes (m4).
The stiffness (ki) and dampers (ci) with index 2, 4 and 6 represent the connection of TM and malleus and
the incudomallear joint and incudostapedial joint, respectively. The stiffness and dampers with index 1, 3 and
5 represent the ligaments and tendons that hold the TM and ossicular chain in the middle ear cavity. Finally,
stiffness k7 and dampers c7 model the cochlear load over the stapes. Figure 1(a) shows the lumped parameter
model scheme.
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Figure 1. (a) the lumped parameter mass-spring model of the middle ear and (b) the analytical model of ear
canal.

Assembling the matrices of mass [M], stiffness [K] and damping [C], the displacement of each DOF is obtained
through the solution of the equation of motion

[M]{ẍ}+ [C]{ẋ}+ [K]{x}= { f}, (4)

being {x}T = {x1,x2,x3,x4} the displacement vector of all the DOFs, {ẋ} and {ẍ} the time derivative of first
and second order, and { f} the excitation vector, defined as

{ f}T = {(ATMPTM) 0 0 0}, (5)
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being ATM the TM area defined as π(0.01/2)2 [m2]. Note that the excitation acts only at the TM defining zero
for the remaining DOFs. It should to be note that defining PTM, the quantities Hfp and ZME can be calculated
using VTM = i2π f x1 and Vfp = i2π f x4, being i =

√
−1.

To define the baseline lumped parameter model we fitted the mechanical parameters in order to match the Hfp
from our model to one experimental data of a cadaveric temporal bone. The experimental Hfp was measured in
a fresh temporal bone, whereas Vfp and PTM were measured using Laser Doppler Vibrometry and a microphone
with a probe tube. We carried out the experiment reproducing the procedure described by Aibara et al. [6].
Then, the resultant mechanical parameters fitting the theoretical-experimental Hfp are exposed in Table 1. The
comparison of theoretical-experimental Hfp is shown in Figure 2(a). Also, both theoretical-experimental results
are compared to the experimental mean ± standard deviation (StD) range over 11 samples experimented by
Aibara et al. [6].
Following the fitting process of Hfp, we then calculated ZME. The result is shown in Figure 2(b), being the
theoretical result compared to the mean ± StD range over 13 samples of cadaveric temporal bones experimented
by Voss et al. [7]. Our result falls in the StD range up to 1 [kHz], being above the experimental range between
1 [kHz] and 4 [kHz]. Note that although we display ZME up to 10 [kHz], Voss et al. [7] measured only up to
4 [kHz].

Table 1. Mechanical parameters of the baseline model.

Stiffness [kN/m] Mass [mg] Damping [mNs/m]
k1 = 0.2 m1 = 2,7 c1 = 105

k2 = 94.7 m2 = 35.3 c2 = 20
k3 = 0.96 m3 = 35.8 c3 = 120
k4 = 10 m4 = 4.4 c4 = 66
k5 = 0.2 - c5 = 30
k6 = 10 - c6 = 0.28

k7 = 1.16 - c7 = 124

2.2 Analytical model of ear canal
As shown in the previous section, Hfp and ZME can be calculated using the outcomes of the lumped parameter
model. However, to calculate the ER taking account the length of the ear canal, an acoustical model of the
ear canal is needed. Thus, we assumed the ear canal as an one dimension duct of constant cross section with
an impedance ZME at the end and a velocity condition at the entrance, as shown in Figure 1(b). The acoustic
pressure field in an one dimension duct can be described by

p(x, t) =
(
Aeikx +Be−ikx)ei2π f t (6)

being k the wave number given as 2π f/c0, c0 the sound velocity in air and A and B the complex constants
obtained from the boundary conditions. Then, the two needed boundary conditions are

p(l, t)
u(l, t)

= ZME (7)

u(0, t) = ei2π f t , (8)

being l the length of the ear canal. We assumed l = 32 [mm], c0 = 343 [m/s] and the air density ρ0 = 1.21
[kg/m3]. Note that the impedance ZME used as boundary condition is previously calculated with the lumped
parameter model described in Section 2.1. Finally, we calculate the reflection coefficient at the end of the ear
canal as RME = B/A and the ER using Equation 3. The computed ER is shown in Figure 2(c), where it is
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compared to the confidence interval (CI) of 80% measured by Shahnaz et al. [8] in healthy subjects. Our result
of ER is in the CI range in almost all frequency range, being slightly out around 2 [kHz].
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Figure 2. Magnitude of Hfp and ZME obtained from the lumped parameter model described in Section 2.1 and
Energy Reflectance obtained from analytical model of the ear canal described in Section 2.2. Model outcomes
are compared to the experimental mean ± StD from [6] in (a), [7] in (b) and [8] in (c).

Although our model provides a good results compared to the experimental references, some limitations of the
model should be pointed out. Firstly, it is assumed that the TM acts as a rigid body, what is not true as
observed by Cheng et al. [9]. Furthermore, the model is able to described only an one dimensional movement
of the middle ear, also called as “piston-like movement”, despite the ossicular chain presents a more complex
movement in high frequencies [7]. On the other hand, the analytical model of the ear canal does not represent
the ear canal curvature and variation of the cross section area.

2.3 Monte Carlo Simulation description
Monte Carlo simulation (MCS) is a probabilistic parametric method widely employed to analyze the statistical
response of structures with uncertainties [10]. The procedure consists in generating n pseudo-random samples
of the random variables of the system, with a given probability density functions (PDF). In what follows, the
deterministic models described in Section 2.1 and 2.2 are computed for each pseudo-random sample of the
ensemble, resulting in n outcomes. Finally, statistical analyzes can be made over the n results, computing the
first and second statistics moments, for example.
Due the lack of experimental data of the mechanical parameters of the middle ear, some assumption on the
statistical properties of them have been taken. We assumed all parameters described in Table 1 and the area of
the TM (ATM) as random variables with a gaussian PDF. The mean value of each parameter is the same used
in the baseline deterministic model. On the other hand, the StDs were defined as a percentage of the mean.
Initially, we assumed a StD of 20% of the mean for all random variables, excepted for the ATM, whereas a StD
of 12% was taken based on the De Greef et al. [1] observations.
In order to define a reasonable n number of pseudo-random samples, a convergence analysis was carried out.
The mean and StD of the first three natural frequencies of the lumped parameter model were calculated varying
the n number of samples. Figure 3 shows the convergence of the mean and StD of the first three natural
frequencies for 10 up to 3000 n samples, with a step sample of 10, resulting in 299 cases computed. In
addition, it is shown the mean of the means and StDs over the all computed cases. The convergence criteria
were defined as ±1% of the mean of the means and ±5% for the mean of the StDs. It was observed a safe
convergence for a number of samples n ≥ 1500, where the variation of the mean for each natural frequency
did not exceeded 1% of the overall mean of the means and 5% of the overall mean of the StDs.
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Figure 3. Convergence analysis of mean (upper panel) and standard deviation (lower panel) of the three first
modes over the number of samples used in the MCS.

3 RESULTS
3.1 Dispersion of the natural frequencies fn

To obtain the undamped natural frequencies of the system the following eigenvalue problem was solved

(λ [M]− [K])Ψ = 0, (9)

begin λ the eigenvalues and Ψ the eigenvectors of the system. The natural frequencies are then calculated as
fn =
√

λ/2π . Then, the Equation 9 was solved for the n samples in the MCS giving n outcomes of each natural
frequencies.
Figure 4 groups the results presenting the distribution of the first three natural frequencies of the system in
terms of histograms. The first three natural frequencies of the system present a distribution similar to gaussian
distribution. It is expected since the input parameters were statistically modeled by gaussian PDFs. For the
first mode, the mean over 1500 samples is 890 [Hz] with StD of 78 [Hz], what represents 8% of the mean.
On the other hand, for the second and third modes the StDs increased to 11% and 13% of the mean values,
respectively. The fourth mode falls out of the frequency range of interest, being the mean equal to 32 [kHz]
with a StD of almost 15% of the mean. These results suggest that the uncertainty of natural frequencies of the
human middle ear increases along the frequency.
At last, it should to be noted that the natural frequencies found here are related to the one dimensional move-
ment of ossicular chain, named in the literature as “piston-like movement”. Due to the ossicular chain complex-
ity, other resonances can be found in the in the same frequency range we analyzed. Homma et al. [11] observed
through a 3D Finite Element model the first mode close to 1 [kHz] (similar to our result), but the second mode
at 1.7 [kHz], not observed in our results.

3.2 Dispersion of the Hfp, ZME and ER
The measures computed with the deterministic model and exposed in Figure 2 were then computed using the
MCS. Figure 5 shows the results of Hfp, ZME and ER by means of minimum (min) and maximum (max) values
at each frequency and the mean ± StD. Also, these results are compared to experimental mean ± StD from
Aibara et al. [6], Voss et al. [7] and Shahnaz et al. [8].
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(a) Mode 1: µ=890 [Hz] and σ=78 [Hz]
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(b) Mode 2: µ=3755 [Hz] and σ=437 [Hz]
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(c) Mode 3: µ=8568 [Hz] and σ=1106 [Hz]

Figure 4. Histograms (with 40 bins each) of the first three natural frequencies of the system with n = 1500,
being µ the mean and σ the StD. These results consider a StD of 20% of the input parameters in the MCS.

In general, the max and min results have a range larger than the experimental mean ± StD reference for the
Hfp and ZME. However, the theoretical mean ± StD of Hfp is much smaller than the experimental reference.
On the other hand, the theoretical mean ± StD of the ZME is comparable to the experimental reference below
1 [kHz], but has diverged from the reference above this frequency. In addition, the theoretical statistical results
of the ER show the variation of the middle ear parameters has a minor influence on the ER dispersion.
Lastly, the experimental data of Hfp, ZME and ER come from different samples of temporal bones/subjects.
Therefore, it is not possible to conclude what is the greater dispersion among Hfp, ZME and ER based on those
experimental data.
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Figure 5. The dispersion of the |Hfp|, |ZME| and ER by means of max and min values ( ) and mean ±
StD ( ), being ( ) the experimental mean ± StD from [6] in (a), [7] in (b) and [8] in (c). These results
consider a StD of 20% of the input parameters and n = 1500 in the MCS.

Once the outcomes in terms of StD of our probabilistic model showed to be considerably smaller than the
experimental data, we increase the dispersion of the input parameters. Thus, the StD of the parameters which
compound [M], [C] and [K] were increased from 20% of the mean to 30%, 40% and 50%. Figure 6 shows the
mean ± StD of the |Hfp|, |ZME| and ER varying the StD of the input parameters in the MCS. The theoretical
results are once more compared to the experimental data from Aibara et al. [6], Voss et al. [7] and Shahnaz
et al. [8]. The increment of input parameters’ StD from 20% up to 50% made the dispersion range of |Hfp|
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similar to the experimental reference below 300 [Hz] and above 2 [kHz]. On the other hand, the range of mean
± StD of |ZME| diverged at high frequencies while the StD of input parameters increased. In the end, the ER
dispersion has not presented relevant increment above 500 [Hz] increasing the StD of the input parameters.
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Figure 6. Mean ± StD of the |Hfp|, |ZME| and ER varying the StD of the input parameters in the MCS, being
( ) StD of 50%, ( ) 40%, ( ) 30%, ( ) 20% and ( ) the experimental reference ([6] in (a), [7]
in (b) and [8] in (c)).

4 FINAL REMARKS AND FUTURE INVESTIGATIONS
In this work we develop a model of the human middle ear using a probabilistic approach for studying middle
ear uncertainties. A coupled lumped parameter and analytical model of the middle and outer ear was combined
to Monte Carlo simulation and four different measures were evaluated. As expected, the first three natural
frequencies of the middle ear are distributed with gaussian shape for gaussian ensembles of input parameters.
Moreover, the uncertainties of the natural frequencies increase with the mode order.
In Section 3.2 we showed the model did not reproduce the dispersion of Hfp, ZME and ER seen in the exper-
imental data assuming the StD of the input parameters as 20% of the mean with Gaussian distribution. Two
hypotheses can be stated: 1. the dispersion of the input parameters was underestimated; and 2. the chosen
Gaussian PDF can not be representative for one or more input parameter. The first hypothesis was tested here
rising different remarks for the three measures analyzed. For the Hfp, the increment of input parameters’ StD
made the model outcomes closer to the experimental data in low and high frequencies, but not around 1 [kHz].
On the other hand, the dispersion of ZME became higher than the experimental reference above 1 [kHz] for
a input parameters’ StD of 40% and 50%. In other words, the increase of the input parameters’ StD result
in a non proportional increase of the model output’s StD along the frequency. These result suggest the input
parameters should hold different StD in the MCS, once we assumed the StD percentage equal for the all input
parameters. Furthermore, the ER showed a low sensitiveness to the middle ear parameters variation. Also, ER
grater than 1 could be seen in some cases, what is not expected. At last, our probabilistic model was based in
a deterministic model fitted to one specific experimental result. This approach lead to a biased statistical result
once the shape of the dispersion is similar to the deterministic case responses.
Although our probabilistic model developed in this work to study middle ear uncertainties has presented some
limitations, it helped to rise some interesting questions for future investigations towards a better probabilistic
approach. Therefore, some topics are intended to be assessed in the next steps, such as: 1. to use other PDF
to model the distribution of the input parameters; 2. to determine the suitable StD of each input parameter
separately; 3. since the present probabilistic results seemed to be biased by the deterministic model, to base
the probabilistic model in more than one deterministic model; 4. to estimate experimentally the distribution of

5432



the natural frequencies; and 5. to develop a more realistic model of the ear canal considering its curvature and
dissipation in order to explain the values of ER grater than 1.
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