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Abstract
Learning-based localization approaches cast the acoustic speaker localization problem as a machine learning
task where a classifier is trained on example data of acoustic feature vectors in order to predict likelihood of
speech presence as a spatio-temporal distribution. We investigate the impact that fundamental acoustic pa-
rameters of the auditory scene (e.g. SNR, acoustic scene complexity, sensor geometry) exert on the ability to
faithfully extract spatio-temporal activity maps for concurrent speakers. Our results indicate that to some degree
shortcomings in the acoustic conditions can be compensated by increased complexity in the applied classifi-
cation techniques. To this end, we systematically investigate localization performance for a set of deep neural
network localizers of varying complexity, and for six different sensor configurations in a bilateral hearing aid
setup. Deep networks result in improved performance compared to linear localizers, and their performance ben-
efits more from an increase in the number of sensor channels. In specific configurations, deep networks with a
smaller number of microphones perform better than a linear baseline network with a larger number of micro-
phones. Thus, location-specific information in source-interference scenarios appears to be encoded non-linearly
in the soundfield, requiring non-linear approaches for optimal decoding.
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1 INTRODUCTION
Acoustic source localization is a task routinely performed by the human auditory system. Several approaches
have been proposed recently that formulate the acoustic source localization problem as a machine learning task
where a mapping from acoustic features to the corresponding source location has to be learned from training
data [4, 6, 8, 3, 1, 2].
The present work proposes a non-linear extension of our earlier linear approach [4] by employing deep feed-
forward networks that learn the transformation from multi-channel audio signals to a probabilistic location map.
Specific emphasis is put on a systematic comparison across several deep network architectures and with a linear
reference networks that serves as baseline. We investigate the question as to what extent the density of spatial
sound field sampling, i.e., number of microphone sensor channels, influences localization accuracy and whether
there might be a trade-off between number of sensors and complexity of the classifiers’ architecture. The results
presented here for speech sources embedded in isotropic noise are indicative of a qualitative difference between
non-linear (deep network) and linear localizers that cannot be overcome by the inclusion of additional sensor
channels.

2 METHODS
2.1 Discriminative deep network architecture for probabilistic acoustic source localization
The discriminative approach to source localization [4] builds on a standard classification framework that is em-
ployed to build decision models for directional sound source presence. Multi-layer feedforward neural network
architectures are trained to learn an implicit representation of relevant acoustic parameters, thus no direct im-
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Figure 1. Processing diagram of the proposed algorithm.

Table 1. Geometries of the hearing aid setup and the resulting number of GCC-PHAT coefficients that form the
feature vector input for discriminative localization.

Geom. #Mic Chan. left Chan. right #GCC

G1 2 front-left front-right 193

G2 4 front-left front-right 579
rear-left rear-right

G3 6 front-left front-right 1158
center-left center-right
rear-left rear-right

pulse response measurements and no additional assumption on the acoustics are required.
Source presence is indicated by cross-correlation function features ρi j(τ), containing a main peak centered
around the TDOA τi j(ζ ) corresponding to location ζ . Due to their invariance to spectral changes, generalized
cross-correlation phase transform (GCC-PHAT) [7] are employed here. The cross-correlation functions should
therefore permit a classifier to adaptively learn to discriminate patterns that imply source presence from those
that occur when no source is active in the direction of interest.
During classifier training, example feature vectors φ are labeled as positive examples for their respective source
direction ζ , whenever a source is present at the corresponding location during the time-frame across which the
feature vector has been computed. We here employ deep feed-forward neural network classifiers in order to
build implicit direction-dependent models during training. Their output layer contains a set of N output units,
one for each direction ζ .
When trained with the categorical cross-entropy cost-function, network outputs converge to a-posteriori proba-
bility estimates for the respective classes. Hence, the output of a trained deep network localization algorithm
provides us with a spatio-temporal probabilistic localization map P̂source(ζ , t) that indicates the probability of
a source being active for each time frame t and each direction ζ . When the single most probable source di-
rection is to be identified, maximum a-posteriori estimates are computed from the probabilistic location map.
Multi-source DOA estimation is achieved by evaluation of the J most probable occurrences of sound source
positions.
Fig. 1 provides a summary of the network structures examined in the present study, with varying number of
network layers and different layer sizes. To investigate the influence also of acoustic parameters, the discrimi-
native localization method has been applied to a number of different sensor geometries, with between two and
six channels of the bilateral Hearing aid setup being used. Table 1 summarizes microphone geometries and
resulting GCC-PHAT feature vector dimensionality.
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Table 2. Performance of DNN architecture compared to linear reference network Net R in terms of van Rijsber-
gen’s effectiveness E in acoustic scenario with 10 dB SNR.

τ/ms Net 1 Net 2 Net 3 Net R rel. imp.

G1 10 0.60 0.60 0.61 0.65 8.3%
G2 10 0.31 0.32 0.32 0.42 26.7%
G3 10 0.30 0.30 0.31 0.39 23.8%

G1 100 0.28 0.29 0.33 0.36 22.0%
G2 100 0.06 0.07 0.07 0.12 46.7%
G3 100 0.06 0.07 0.07 0.11 41.5%

3 EXPERIMENTAL EVALUATION
3.1 Training and evaluation data
Data for training and evaluation comprising, in total, 15 hours of multi-channel data were generated from a
database of multi-channel head-geometry room impulse response functions [5] and the TIMIT speech corpus.
These included 144 unique speaker-utterance combinations for each SNR condition per direction, with space
subdivided into 72 direction-of-arrival locations, spaced 5 degrees apart.

3.2 Experiments
Experiments were carried out in order to systematically investigate the effect that different sensor geometries
and deep network architectures as outlined above have on localization performance. Signal-to-noise ratio (SNR)
ranged from clean to −10 dB. The maximum a-posteriori direction estimate has been computed on (unaveraged)
localization probability outputs of the networks on a 10 ms time-scale, as well as after temporal pooling of
probabilities across 100 ms frames. Results from a subset of experiments are reported below, which highlight
the observed effects in a number of typical acoustic scenarios. Experimental conditions not reported here include
a variation in required spatial localization accuracy, additional temporal pooling time-constants, and presence of
a localized interfering speaker in addition to isotropic noise.

3.3 Results
Table 2 shows van Rijsbergen’s effectiveness E = 1−F1, indicating that DNN architectures perform significantly
better than the linear reference net, albeit the differences between DNN architectures being minor. The im-
provement with 6 microphones (G3) instead of 4 microphones (G2) appears small, with the linear network in
situation G3 still performing poorer than the DNN localizers in situation G2. Thus, information about source
location in an interfering noise field may require non-linear processing for decoding, an effect that linear meth-
ods cannot compensate for by denser spatial sampling, cf. situation G3 with Net R. Table 3 investigates the
effect of increasing the number of recording channels, showing relative improvement of geometries G2 and G3
over the 2-microphone geometry G1 (with the respective network architecture and pooling time-constant being
held equal). The results show that DNN=processing obtains a larger benefit from an additional microphones
compared to the linear network Net R.

4 SUMMARY
In the present contribution, we have proposed a deep network approach to acoustic source localization in a hear-
ing aid scenario with multiple behind-the-ear microphones mounted bilaterally on a head. While our previous
work has shown that source localization in this setup can be carried out with high accuracy using learned lin-
ear filters, results presented here show that performance can be further increased through the use of non-linear
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Table 3. Effect of increasing number of recording channels from 2 microphones (geometry G1) to 4 (G2) and
6 (G3).

τ/ms Net 1 Net 2 Net 3 Net R

G2 10 48.1% 47.6% 47.3% 35.0%
G3 10 50.3% 49.8% 49.4% 40.1%
G2 100 76.5% 76.4% 78.4% 65.6%
G3 100 77.6% 77.1% 79.3% 70.1%

learning algorithms such as deep feedforward networks. While the specific network architecture appeared to be
of lesser significance, it may be of interest that the improved performance of non-linear localization cannot be
achieved with linear methods even if the sensor number is increased further: Linear models on 6-channel data
were incapable of reaching the performance that non-linear networks achieved on 4-channel data.
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