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ABSTRACT 
Ray was a scientist in the classical sense: a creative intellect who sought the truth. He was also someone who 
had a profound impact on the career of many hearing scientists. Ray believed that to understand hearing it 
was necessary to replicate its behavior in a computer model. His first major contribution in hearing was the 
“Meddis Haircell”, and a series of papers exploring the adaptation of firing rate in auditory nerve fibers. 
These were accompanied by models of stream segregation, of pitch, of the segregation of concurrent vowels, 
numerous models of the processing of sound by neurons in the auditory brainstem, and a non-linear model of 
the basilar membrane. In later years, Ray became increasingly interested in hearing loss, and the role of the 
olivocochlear system. Technology also deserves a special mention: Ray’s models were implemented in 
silicon, evaluated using automatic speech recognition, and even inspired a smart-phone based hearing aid. 
Ray lives on in his work, but also his colleagues: those of us that learnt from him, worked with him, disagreed 
with (yes!), were influenced by his work, and shared his passion for models of the auditory system. 
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1. INTRODUCTION 
Roll back to the 1980s (for me, at least): Live Aid, Dungeons and Dragons, and the 

BBC-microcomputer (32K, of course). But, though I didn’t know it yet, another 80’s classic, the 
Meddis Haircell (5), was going to be just as iconic and influential in my life.       

Ray was the first hearing researcher I met. In the 1990s he was unique in the UK: a full time 
auditory modeler (not one of those experimentalists who dabbled with models). I visited his labs, first 
at the University of Loughborough and then the University of Essex. Like anyone else who showed a 
passion for hearing, and especially models of hearing, he welcomed me warmly from the first day. And 
like for many others, meeting Ray Meddis was a pivotal event in my career.     

Ray’s own career in research did not begin with hearing. His PhD was on the psychometrics of 
mood, in which he studied the factor structure and correlations between different ratings of mood. 
Following this he published several articles about rank methods in statistics, before beginning a 
program of research into sleep, including publishing a book on his theories (7).  

Eventually, Ray discovered his calling: developing computer models of how we hear. For over 35 
years, Ray developed computer models of the auditory system, ranging from cochlear filtering to 
auditory scene analysis. In this article, I will attempt to provide a review of some of his (early) work, 
and the work that has had the greatest influence on my own. It is not possible to discuss all his work, 
and I apologize for that which has been omitted. Neither is it possible to provide the complete context 
of related work by other authors of the time (more apologies). However, I will attempt to mention some 
of the developments that followed Ray’s contributions, to indicate his influence.   

Overall, I wish to convey his creativity. He was a scientist who generated many ideas, about an 
aspect of the world that fascinated him. His ideas were not always right, but they were always of great 
intellectual value and utility, and served to push forward our understanding of the auditory system.  

2. THE PERIPHERY 
Ray’s work in hearing began with the auditory periphery, and this is the area of hearing in which he 

published the most papers (32 articles) and arguably had the most impact on the field (>2500 citations at 
the time of writing, according to Google Scholar).  
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2.1 The “Meddis Haircell” 
The first publication in the field was a model of the inner haircell (IHC), and the adaptation of firing 

rate observed on the auditory nerve (5). The model simulated the sound driven release, and recycling 
of neurotransmitter at the IHC-auditory nerve synapse (Stage 5 in Figure 1). This model was 
remarkably successful in reproducing the firing properties of the auditory nerve.  

Previous models (reviewed in 4) had introduced increasingly complex arrangements of 
neurotransmitter reservoirs, in order to account for observed adaptation characteristics. His model 
proposed a process consistent with physiological evidence at other synapses: the recycling of 
neurotransmitter. The limited supply rate of new transmitter, and the limited rates of reuptake and 
recycling, all contributed to the adaptation and saturation characteristics of firing rate at the synapse. 
It also had acceptable input-output non-linearity, rectification and phase-locking properties. This is a 
good example of Ray’s modeling philosophy: that a model’s properties should emerge naturally from 
faithful modelling of the mechanism, rather than by engineering-in each property explicitly.   

Numerous modelling studies in the 1990s, including Ray’s, employed an initial bandpass filter to 
model the outer/middle ear transfer function, a linear Gammatone filterbank to model the mechanical 
filtering of the basilar membrane, and a haircell model. Often this was an array of “Meddis haircells”, 
or a subsequent model proposed by Westerman and Smith which performed quite similarly but was 
analytically tractable (8, 9). Either way, the result was a computationally efficient, and remarkably 
functional “auditory frontend” which could be used as the input to models of subsequent processing.     

These models were not without limitations. They did not capture the compressive nature of the 
cochlear filtering (due to the linear modelling of basilar membrane filtering). Nor could they account 
for the variation in firing rate as a function of level seen in different types of auditory nerve fibers. The 
Meddis haircell also phase-locked to higher frequencies that that of mammals. In 2002, Ray, myself, 
Lowel O’Mard and Enrique Lopez-Poveda published a revised IHC model (2) (Figure 1A). The 
incorporation of a biophysical model of the filtering by the haircell membrane (10) provided the 
further low-pass filtering to correctly model the phase locking seen both in the haircell itself and the 
auditory nerve.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A. Model schematic (2002)  

Figure 1. Models of the auditory periphery. A. A 
single channel of the DRNL and IHC model, 
reproduced from (2). B. Diagram showing the 
responses of the DNRL output (top) and the auditory 
nerve model output (bottom), to individual pure tones 
played at the CF of the DRNL filter: the contribution 
of the linear (L; grey) and non-linear (NL; black) 
pathways, and the effect of increasing the maximum 
calcium conductance at the synapse. C. The 
corresponding responses to pure tones of fixed level 
that vary in frequency. The upper panel in C shows 
the responses of the linear and non-linear path 
separately
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The 2002 model also proposed that Calcium channels at each synapse might determine the auditory 
nerve fiber type. It is well established that, in all synapses, depolarization of the cell membrane 
(neuron or haircell) leads to the influx of Calcium, which in turn leads to the release of 
neurotransmitter (Figure 1A, stage 4). Scaling the overall amount of Calcium (the number of ion 
channels) at a synapse could act as a “gain” mechanism to determine the spontaneous rate. 
Simultaneously, this determined the window of dynamic range over which the synapse operated, 
determining the threshold of the nerve fiber and the shape of the rate-level function (Figure 1B).  

Ray was passionate that wherever possible, the models should reflect mechanisms faithfully; that 
this would lead to more elegant models with more predictive power. At the time there was no 
experimental evidence to support the Calcium hypothesis for fiber type. Yet, recent data lend some 
support to this idea (11). This model also proposed that he number of vesicles of neurotransmitter 
ready for release at any one time was proposed to be small (~10), and this influenced the statistics of 
auditory nerve action potentials. Recent work has greatly expanded the range of spiking statistics that 
can be accounted for by models with as few as 4 quanta (12, 13).   

 

2.2 Basilar membrane filtering 
The Dual-Resonance Non-Linear (DRNL) filter, developed with Enrique Lopez-Poveda and Lowel 

O’Mard (14) to address the limitations of a linear filterbank, was a “non-linear bandpass” model (15). 
It proposed that the basilar membrane could be modeled as two parallel filter pathways (Figure 1A, 
Stage 2). The compressive pathway had a higher gain, and so determined the responses at low sound 
levels, producing the sensitive ‘tip’ of the tuning curve. The linear pathway was of lower gain, but 
because of the compression in the non-linear pathway, the output of the linear pathway dominated the 
overall output at high sound levels (Figure 1B). The linear-pathway produced the low-frequency tails 
of tuning curves, and led to a shift in center frequency with increasing sound levels (Figure 1C).  

The DRNL was straightforward to fit to basilar membrane laser interferometry data (16); it 
produced suppression effects and distortion products (14). It could also account for masking data in 
human subjects (17). In keeping with Ray’s modelling philosophy, several observed aspects of 
cochlear non-linearity, such as two-tone suppression and phase reversal, were emergent properties of 
the model. Furthermore, by changing a single parameter in the DRNL, one could control the gain of the 
“cochlear amplifier”. Thus it could stimulate outer haircell damage, or the efferent control by the 
medial oliviocochlear system, which synapses on to outer haircells, and modulate the energy that they 
can impart to BM motion (18, 19).  

The work of Ray, colleagues and others (20, 21) brought us the modern phenomenological cochlear 
model: capable of reproducing a great many of the known properties of the auditory periphery. In some 
instances such models can replace recordings from the auditory nerve, e.g.(22).  

Recent data has consolidated the view that human auditory filters are narrower than in typical 
experimental mammals (23). The controversy surrounding this arose in part because different 
psychophysical methods of estimating auditory filter widths give different estimates of cochlear 
tuning (24). To my knowledge, no model of the auditory periphery has yet successfully accounted for 
both ways of estimating cochlear tuning. Human models are necessarily are less constrained than those 
of animals; we do not know what human auditory nerve tuning curves look like. A well constrained 
model of the human periphery, which can account quantitatively for this difference, and for other data 
such as two-tone suppression, would surely be a valuable step in fully understanding how cochlear 
filtering influences human perception and communication.  

3. PITCH 

3.1 The autocorrelation model of pitch 
In 1991, Michael Hewitt and Ray produced the definitive computational model of pitch processing 

(25) and his most cited work (>600 citations at the time of writing). Based on the original 
autocorrelation model proposed by Licklider (26), this model encapsulated the development of this 
and contemporary theories at the time (27) concerning the importance of temporal coding of 
periodicity in the auditory system for determining our perception of pitch.  

The first stage of the model (Figure 2A) is a filterbank model of the auditory periphery similar to 
that already described. The autocorrelation stage then reveals the periodic variation in firing rate in 
each channel (Figure 2B, upper plot). These functions are pooled (i.e. averaged) across the filterbank 
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channels and a subsequent algorithm identifies the pitch from this pooled-autocorrelation function 
(Figure 2B, lower plot), often by finding the delay at which the highest peak occurs in the function. 
Several similar models were produced since from Ray and others, e.g. (28). Although addressing 
various limitations, a wide range of studies support that autocorrelation is a good model of pitch.            

In the intervening years, there has been no evidence of autocorrelation being performed in any part 
of the auditory pathway. Numerous alternative mechanisms have been proposed e.g. (29), but the 
puzzle of pitch remains.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. BRAINSTEM AND MIDBRAIN NEURAL MODELS  
Facilitated by their work on peripheral models, Ray and colleagues were well placed to study how 

the representation produced by the cochlea might be transformed by the brainstem and midbrain.  

4.1 Cochlear nucleus cells 
The cochlear nucleus (CN) is the first site of auditory processing in the central nervous s ystem. To 

a crude approximation, the CN can be considered as a set of parallel processing pathways operating on 
the input from the auditory nerve. Knowledge of the connections, and understanding of the role of 
these connections within CN continues to grow. However, the responses of some CN neurons can be 
understood from the way that they integrate information across multiple auditory nerve fibers, and 
their intrinsic membrane properties. Stellate cells receive innervation from a number of auditory nerve 
fibers with similar CFs. Below threshold they act as comparatively linear leaky-integrators of their 
inputs. In response to a pure tone stimulus they exhibit particular precision in the timing of the first 2-3 
action potentials. In a histogram of the timing of these spikes as a function of the time within the 
stimulus (a peri-stimulus time histogram; PSTH), this is visible as two or three distinct peaks at the 
beginning of the response (Figure 3B). Due to these peaks, these neurons are classified as ‘choppers’.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Stellate cell model. A. Model 
Schematic (adapted from 3). B. Example 
of a sustained chopper (ChS) response 
from (adapted from 3). C. Coefficient of 
variation (CV) of the response in B and of 
a less regular transient chopper model 
adapted from (3). D. Phase-locking in a 
sustained chopper model to the frequency 
of a sinusoidally amplitude modulated 
tone, expressed as gain relative to the 
modulation in the stimulus waveform 
adapted from (6).  

Figure 2. The 
autocorrelation model 
of pitch. A. Model 
schematic adapted 
from (1). B. Example 
autocorrelation output, 
based on the model 
from Smith et al. (4). 
C. Pooled ACF 
function.  
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Chopper neurons vary in the degree to which the regularity of this spiking continues throughout the 
response to a pure tone. Evidence suggested that inhibition played a key role in determining this (30). 
Hewitt and Meddis (3) demonstrated further, that a single ‘integrate-and-fire’ type model neuron 
(Figure 3A) with no inhibition could reproduce this behavior, and regularity was dependent on the 
number of auditory nerve fibers innervating the neuron, the threshold and the current magnitude of the 
individual inputs.  

A further interesting property of this cell type was the way that it encoded the acoustic envelope. 
The mean firing rate of neurons in CN is generally insensitive to  frequency of amplitude modulation 
(AM). Rather, information about any modulation is encoded in the timing of spikes. This is not 
dissimilar to the way that auditory nerve fibers ‘phase-lock’ to low frequency carriers and AM. 
However, unlike the auditory nerve, phase-locking in individual chopper neurons is ‘tuned’ to specific 
modulation frequencies (31). Thus a logical hypothesis was that these neurons formed the first stage in 
an envelope extraction process in the brain, with different neurons being tuned to different modulation 
frequencies. Meddis and Hewitt (32) demonstrated that their simple stellate neuron model 
demonstrated similar phase-locking to the envelope as that observed in vivo.  

Computer models have continued to contribute to our understanding of processing in the CN. For 
example, models have shown how auditory nerve innervation contributes to the responses of  onset and 
primary-like neurons (33, 34), and have been instrumental in synthesizing how different membrane 
currents contribute to response properties (35-37). Models of stellate-cells also successfully predicted 
the existence of mode-locked (more complex patterns of synchronization to envelopes) spike trains in 
these neurons (38). Such models are now informing our understanding about the consequences of 
synaptopathy (39).  

4.2 Comodulation masking release 
Although many properties of cochlear nucleus cells appear to arise from their int rinsic membrane 

properties and their innervation via the auditory nerve, the importance of network processing in the 
CN is becoming increasingly clear (40). One of the best established sources of local connections in the 
VCN are the inhibitory connections provided by the D-stellates which are associated with 
‘onset-chopper’ responses. Ray and colleagues proposed that this wideband inhibitory circuit could 
enhance signals in noise, by providing inhibition which was time locked to wide-band envelope 
fluctuations, suppressing the response to the masker in conditions where a masker’s spectral energy 
was co-modulated across a wide frequency range. This lead to an effect similar to the psychophysical 
phenomenon known as co-modulation masking release (41, 42). This work highlighted how models of 
the VCN could yield meaningful predictions about circuit processing, as has been more frequently 
demonstrated in the dorsal region of CN, e.g. (43). Evidence continues to accumulate of circuitry in 
VCN, e.g. (44). Perhaps the next frontier is to bring these models together at a large scale, e.g.(40). 
With ever more computational power, simulating the entire cochlear nucleus may be sight.  

4.3 Coincidence detection in the midbrain  
One of the most controversial debates in the encoding of modulation has been the topographical (or 

periodotopic) arrangement of neurons in the inferior colliculus (IC) which, unlike in the CN, show 
rate-tuning to modulation frequency (45). The contribution of Hewitt and Meddis (32) was to show a 
possible way in which this firing rate sensitivity might arise from temporal modulation tuning of 
cochlear nucleus stellate cells, which project to the IC. In this model, the firing rate-tuning is 
determined by the temporal tuning of a number of CN neurons converging onto one IC neuron. The 
converging CN neurons have similar temporal tuning. Their locking to the envelope is most coincident 
when stimulated with modulation frequencies close to the peak in the tMTFs of the CN model neurons. 
Thus, the firing rate of the IC neuron increases close to the tMTF peaks in the CN stellate cells 
projecting to it. The model was effective at reproducing the rate-sensitivity of IC neurons, and the 
effects of sound level on those functions (45). It is clear, e.g. (46, 47) that several other factors can also 
influence modulation tuning in the IC. Nevertheless this model demonstrated that it was relatively 
simple to transform the temporal coding in the brainstem into a rate code in the midbrain.  

4.4 A chopper neuron based pitch model  
The possible role of cochlear nucleus stellate cells and coincidence detection in the IC for pitch 

processing was subsequently investigated by Weigrebe and Meddis (48) and Meddis and O’Mard (49). 
Their model was proposed as a physiologically plausible equivalent of the previous autocorrelation 
model, with a similar overall architecture, but with different individual components. In place of an 
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autocorrelation operation, for each frequency channel of the cochlear filterbank there was an array of 
cochlear nucleus stellate cells. This was followed by a layer of inferior colliculus coincidence 
detectors, individually tuned to the range of pitch periods required. Duplicated across the frequency 
range of the cochlea, this created a two-dimensional ‘correlogram-like’ map of the periodicities 
present in each frequency range. A subsequent set of across-frequency integrators for each delay 
tuning, also presumed to be in the IC, formed the equivalent of the pooled-autocorrelation function 
from which pitch judgements were to be made. This stellate cell model and the subsequent stages in the 
IC demonstrated sensitivity to variations in stimuli consistent with pitch, such as the ability to extract 
the pitch from a harmonic complex with a missing fundamental or sensitivity to linearly shifted (i.e. 
inharmonic) components. This study stands as a valuable addendum to autocorrelation models of 
pitch: the brain does have the computational facility to process the cues for pitch. The potential of 
coincidence detection for processing pitch has now been demonstrated several times, e.g. (50-52).  

5. FINAL REMARKS  
This short article has focused on a subset of Ray’s work. It omits many other contributions by him, 

his colleagues, and does a poor service to many other scientists who shared his passion and inspired 
him. Ray had a tremendous influence on not only the research but the lives of individuals. He cared 
deeply not only about the topic but also the people he worked with, mentored, and his colleagues in the 
wider community. One last point: Ray began his work in hearing, creating models of the auditory 
system was a relative rarity. Today, complex numerical methods and computational models are 
indispensable and standard tools. This means there are more opportunities for the next generation of 
auditory modelers to follow in the footsteps of Ray. I’m pretty sure he would be happy about that.      
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